forked from apache/datafusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sort.rs
595 lines (490 loc) · 19.6 KB
/
sort.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Adapted from merge benchmark. Primary difference is that the input data is not ordered.
use std::sync::Arc;
use arrow::array::DictionaryArray;
use arrow::datatypes::Int32Type;
use arrow::{
array::{Float64Array, Int64Array, StringArray, UInt64Array},
compute::{self, SortOptions, TakeOptions},
datatypes::Schema,
record_batch::RecordBatch,
};
/// Benchmarks for SortExec
use criterion::{criterion_group, criterion_main, Criterion};
use datafusion::physical_plan::coalesce_partitions::CoalescePartitionsExec;
use datafusion::{
execution::context::TaskContext,
physical_plan::{memory::MemoryExec, sorts::sort::SortExec, ExecutionPlan},
prelude::SessionContext,
};
use datafusion_physical_expr::{expressions::col, PhysicalSortExpr};
use futures::StreamExt;
use rand::rngs::StdRng;
use rand::{Rng, SeedableRng};
use tokio::runtime::Runtime;
use lazy_static::lazy_static;
/// Total number of streams to divide each input into
/// models 8 partition plan (should it be 16??)
const NUM_STREAMS: u64 = 8;
/// Total number of input rows to generate
const INPUT_SIZE: u64 = 100000;
// cases:
// * physical sort expr (X, Y Z, NULLS FIRST, ASC) (not parameterized)
//
// streams of distinct values
// streams with 10% duplicated values (within each stream, and across streams)
// These cases are intended to model important usecases in TPCH
// parameters:
//
// Input schemas
lazy_static! {
static ref I64_STREAMS: Vec<Vec<RecordBatch>> = i64_streams();
static ref F64_STREAMS: Vec<Vec<RecordBatch>> = f64_streams();
static ref UTF8_LOW_CARDINALITY_STREAMS: Vec<Vec<RecordBatch>> = utf8_low_cardinality_streams();
static ref UTF8_HIGH_CARDINALITY_STREAMS: Vec<Vec<RecordBatch>> = utf8_high_cardinality_streams();
static ref DICTIONARY_STREAMS: Vec<Vec<RecordBatch>> = dictionary_streams();
static ref DICTIONARY_TUPLE_STREAMS: Vec<Vec<RecordBatch>> = dictionary_tuple_streams();
static ref MIXED_DICTIONARY_TUPLE_STREAMS: Vec<Vec<RecordBatch>> = mixed_dictionary_tuple_streams();
// * (string(low), string(low), string(high)) -- tpch q1 + iox
static ref UTF8_TUPLE_STREAMS: Vec<Vec<RecordBatch>> = utf8_tuple_streams();
// * (f64, string, string, int) -- tpch q2
static ref MIXED_TUPLE_STREAMS: Vec<Vec<RecordBatch>> = mixed_tuple_streams();
}
fn criterion_benchmark(c: &mut Criterion) {
c.bench_function("sort i64", |b| {
let case = SortBenchCase::new(&I64_STREAMS);
b.iter(move || case.run())
});
c.bench_function("sort i64 preserve partitioning", |b| {
let case = SortBenchCasePreservePartitioning::new(&I64_STREAMS);
b.iter(move || case.run())
});
c.bench_function("sort f64", |b| {
let case = SortBenchCase::new(&F64_STREAMS);
b.iter(move || case.run())
});
c.bench_function("sort f64 preserve partitioning", |b| {
let case = SortBenchCasePreservePartitioning::new(&F64_STREAMS);
b.iter(move || case.run())
});
c.bench_function("sort utf8 low cardinality", |b| {
let case = SortBenchCase::new(&UTF8_LOW_CARDINALITY_STREAMS);
b.iter(move || case.run())
});
c.bench_function("sort utf8 low cardinality preserve partitioning", |b| {
let case = SortBenchCasePreservePartitioning::new(&UTF8_LOW_CARDINALITY_STREAMS);
b.iter(move || case.run())
});
c.bench_function("sort utf8 high cardinality", |b| {
let case = SortBenchCase::new(&UTF8_HIGH_CARDINALITY_STREAMS);
b.iter(move || case.run())
});
c.bench_function("sort utf8 high cardinality preserve partitioning", |b| {
let case = SortBenchCasePreservePartitioning::new(&UTF8_HIGH_CARDINALITY_STREAMS);
b.iter(move || case.run())
});
c.bench_function("sort utf8 tuple", |b| {
let case = SortBenchCase::new(&UTF8_TUPLE_STREAMS);
b.iter(move || case.run())
});
c.bench_function("sort utf8 tuple preserve partitioning", |b| {
let case = SortBenchCasePreservePartitioning::new(&UTF8_TUPLE_STREAMS);
b.iter(move || case.run())
});
c.bench_function("sort utf8 dictionary", |b| {
let case = SortBenchCase::new(&DICTIONARY_STREAMS);
b.iter(move || case.run())
});
c.bench_function("sort utf8 dictionary preserve partitioning", |b| {
let case = SortBenchCasePreservePartitioning::new(&DICTIONARY_STREAMS);
b.iter(move || case.run())
});
c.bench_function("sort utf8 dictionary tuple", |b| {
let case = SortBenchCase::new(&DICTIONARY_TUPLE_STREAMS);
b.iter(move || case.run())
});
c.bench_function("sort utf8 dictionary tuple preserve partitioning", |b| {
let case = SortBenchCasePreservePartitioning::new(&DICTIONARY_TUPLE_STREAMS);
b.iter(move || case.run())
});
c.bench_function("sort mixed utf8 dictionary tuple", |b| {
let case = SortBenchCase::new(&MIXED_DICTIONARY_TUPLE_STREAMS);
b.iter(move || case.run())
});
c.bench_function(
"sort mixed utf8 dictionary tuple preserve partitioning",
|b| {
let case =
SortBenchCasePreservePartitioning::new(&MIXED_DICTIONARY_TUPLE_STREAMS);
b.iter(move || case.run())
},
);
c.bench_function("sort mixed tuple", |b| {
let case = SortBenchCase::new(&MIXED_TUPLE_STREAMS);
b.iter(move || case.run())
});
c.bench_function("sort mixed tuple preserve partitioning", |b| {
let case = SortBenchCasePreservePartitioning::new(&MIXED_TUPLE_STREAMS);
b.iter(move || case.run())
});
}
/// Encapsulates running a test case where input partitioning is not preserved.
struct SortBenchCase {
runtime: Runtime,
task_ctx: Arc<TaskContext>,
// The plan to run
plan: Arc<dyn ExecutionPlan>,
}
impl SortBenchCase {
/// Prepare to run a benchmark that merges the specified
/// partitions (streams) together using all keyes
fn new(partitions: &[Vec<RecordBatch>]) -> Self {
let runtime = tokio::runtime::Builder::new_multi_thread().build().unwrap();
let session_ctx = SessionContext::new();
let task_ctx = session_ctx.task_ctx();
let schema = partitions[0][0].schema();
let sort = make_sort_exprs(schema.as_ref());
let projection = None;
let exec = MemoryExec::try_new(partitions, schema, projection).unwrap();
let exec = Arc::new(CoalescePartitionsExec::new(Arc::new(exec)));
let plan = Arc::new(SortExec::try_new(sort, exec, None).unwrap());
Self {
runtime,
task_ctx,
plan,
}
}
/// runs the specified plan to completion, draining all input and
/// panic'ing on error
fn run(&self) {
let plan = Arc::clone(&self.plan);
let task_ctx = Arc::clone(&self.task_ctx);
assert_eq!(plan.output_partitioning().partition_count(), 1);
self.runtime.block_on(async move {
let mut stream = plan.execute(0, task_ctx).unwrap();
while let Some(b) = stream.next().await {
b.expect("unexpected execution error");
}
})
}
}
/// Encapsulates running a test case where input partitioning is not preserved.
struct SortBenchCasePreservePartitioning {
runtime: Runtime,
task_ctx: Arc<TaskContext>,
// The plan to run
plan: Arc<dyn ExecutionPlan>,
partition_count: usize,
}
impl SortBenchCasePreservePartitioning {
/// Prepare to run a benchmark that merges the specified
/// partitions (streams) together using all keyes
fn new(partitions: &[Vec<RecordBatch>]) -> Self {
let partition_count = partitions.len();
let runtime = tokio::runtime::Builder::new_multi_thread().build().unwrap();
let session_ctx = SessionContext::new();
let task_ctx = session_ctx.task_ctx();
let schema = partitions[0][0].schema();
let sort = make_sort_exprs(schema.as_ref());
let projection = None;
let exec = MemoryExec::try_new(partitions, schema, projection).unwrap();
let plan = Arc::new(SortExec::new_with_partitioning(
sort,
Arc::new(exec),
true,
None,
));
Self {
runtime,
task_ctx,
plan,
partition_count,
}
}
/// runs the specified plan to completion, draining all input and
/// panic'ing on error
fn run(&self) {
let plan = Arc::clone(&self.plan);
let task_ctx = Arc::clone(&self.task_ctx);
assert_eq!(
plan.output_partitioning().partition_count(),
self.partition_count
);
self.runtime.block_on(async move {
for i in 0..self.partition_count {
let mut stream = plan.execute(i, task_ctx.clone()).unwrap();
while let Some(b) = stream.next().await {
b.expect("unexpected execution error");
}
}
})
}
}
/// Make sort exprs for each column in `schema`
fn make_sort_exprs(schema: &Schema) -> Vec<PhysicalSortExpr> {
schema
.fields()
.iter()
.map(|f| PhysicalSortExpr {
expr: col(f.name(), schema).unwrap(),
options: SortOptions::default(),
})
.collect()
}
/// Create streams of int64 (where approximately 1/3 values is repeated)
fn i64_streams() -> Vec<Vec<RecordBatch>> {
let array: Int64Array = DataGenerator::new().i64_values().into_iter().collect();
let batch = RecordBatch::try_from_iter(vec![("i64", Arc::new(array) as _)]).unwrap();
split_batch(batch)
}
/// Create streams of f64 (where approximately 1/3 values are repeated)
/// with the same distribution as i64_streams
fn f64_streams() -> Vec<Vec<RecordBatch>> {
let array: Float64Array = DataGenerator::new().f64_values().into_iter().collect();
let batch = RecordBatch::try_from_iter(vec![("f64", Arc::new(array) as _)]).unwrap();
split_batch(batch)
}
/// Create streams of random low cardinality utf8 values
fn utf8_low_cardinality_streams() -> Vec<Vec<RecordBatch>> {
let array: StringArray = DataGenerator::new()
.utf8_low_cardinality_values()
.into_iter()
.collect();
let batch =
RecordBatch::try_from_iter(vec![("utf_low", Arc::new(array) as _)]).unwrap();
split_batch(batch)
}
/// Create streams of high cardinality (~ no duplicates) utf8 values
fn utf8_high_cardinality_streams() -> Vec<Vec<RecordBatch>> {
let array: StringArray = DataGenerator::new()
.utf8_high_cardinality_values()
.into_iter()
.collect();
let batch =
RecordBatch::try_from_iter(vec![("utf_high", Arc::new(array) as _)]).unwrap();
split_batch(batch)
}
/// Create a batch of (utf8_low, utf8_low, utf8_high)
fn utf8_tuple_streams() -> Vec<Vec<RecordBatch>> {
let mut gen = DataGenerator::new();
// need to sort by the combined key, so combine them together
let mut tuples: Vec<_> = gen
.utf8_low_cardinality_values()
.into_iter()
.zip(gen.utf8_low_cardinality_values().into_iter())
.zip(gen.utf8_high_cardinality_values().into_iter())
.collect();
tuples.sort_unstable();
let (tuples, utf8_high): (Vec<_>, Vec<_>) = tuples.into_iter().unzip();
let (utf8_low1, utf8_low2): (Vec<_>, Vec<_>) = tuples.into_iter().unzip();
let utf8_high: StringArray = utf8_high.into_iter().collect();
let utf8_low1: StringArray = utf8_low1.into_iter().collect();
let utf8_low2: StringArray = utf8_low2.into_iter().collect();
let batch = RecordBatch::try_from_iter(vec![
("utf_low1", Arc::new(utf8_low1) as _),
("utf_low2", Arc::new(utf8_low2) as _),
("utf_high", Arc::new(utf8_high) as _),
])
.unwrap();
split_batch(batch)
}
/// Create a batch of (f64, utf8_low, utf8_low, i64)
fn mixed_tuple_streams() -> Vec<Vec<RecordBatch>> {
let mut gen = DataGenerator::new();
// need to sort by the combined key, so combine them together
let mut tuples: Vec<_> = gen
.i64_values()
.into_iter()
.zip(gen.utf8_low_cardinality_values().into_iter())
.zip(gen.utf8_low_cardinality_values().into_iter())
.zip(gen.i64_values().into_iter())
.collect();
tuples.sort_unstable();
let (tuples, i64_values): (Vec<_>, Vec<_>) = tuples.into_iter().unzip();
let (tuples, utf8_low2): (Vec<_>, Vec<_>) = tuples.into_iter().unzip();
let (f64_values, utf8_low1): (Vec<_>, Vec<_>) = tuples.into_iter().unzip();
let f64_values: Float64Array = f64_values.into_iter().map(|v| v as f64).collect();
let utf8_low1: StringArray = utf8_low1.into_iter().collect();
let utf8_low2: StringArray = utf8_low2.into_iter().collect();
let i64_values: Int64Array = i64_values.into_iter().collect();
let batch = RecordBatch::try_from_iter(vec![
("f64", Arc::new(f64_values) as _),
("utf_low1", Arc::new(utf8_low1) as _),
("utf_low2", Arc::new(utf8_low2) as _),
("i64", Arc::new(i64_values) as _),
])
.unwrap();
split_batch(batch)
}
/// Create a batch of (utf8_dict)
fn dictionary_streams() -> Vec<Vec<RecordBatch>> {
let mut gen = DataGenerator::new();
let values = gen.utf8_low_cardinality_values();
let dictionary: DictionaryArray<Int32Type> =
values.iter().map(Option::as_deref).collect();
let batch =
RecordBatch::try_from_iter(vec![("dict", Arc::new(dictionary) as _)]).unwrap();
split_batch(batch)
}
/// Create a batch of (utf8_dict, utf8_dict, utf8_dict)
fn dictionary_tuple_streams() -> Vec<Vec<RecordBatch>> {
let mut gen = DataGenerator::new();
let mut tuples: Vec<_> = gen
.utf8_low_cardinality_values()
.into_iter()
.zip(gen.utf8_low_cardinality_values())
.zip(gen.utf8_low_cardinality_values())
.collect();
tuples.sort_unstable();
let (tuples, c): (Vec<_>, Vec<_>) = tuples.into_iter().unzip();
let (a, b): (Vec<_>, Vec<_>) = tuples.into_iter().unzip();
let a: DictionaryArray<Int32Type> = a.iter().map(Option::as_deref).collect();
let b: DictionaryArray<Int32Type> = b.iter().map(Option::as_deref).collect();
let c: DictionaryArray<Int32Type> = c.iter().map(Option::as_deref).collect();
let batch = RecordBatch::try_from_iter(vec![
("a", Arc::new(a) as _),
("b", Arc::new(b) as _),
("c", Arc::new(c) as _),
])
.unwrap();
split_batch(batch)
}
/// Create a batch of (utf8_dict, utf8_dict, utf8_dict, i64)
fn mixed_dictionary_tuple_streams() -> Vec<Vec<RecordBatch>> {
let mut gen = DataGenerator::new();
let mut tuples: Vec<_> = gen
.utf8_low_cardinality_values()
.into_iter()
.zip(gen.utf8_low_cardinality_values())
.zip(gen.utf8_low_cardinality_values())
.zip(gen.i64_values())
.collect();
tuples.sort_unstable();
let (tuples, d): (Vec<_>, Vec<_>) = tuples.into_iter().unzip();
let (tuples, c): (Vec<_>, Vec<_>) = tuples.into_iter().unzip();
let (a, b): (Vec<_>, Vec<_>) = tuples.into_iter().unzip();
let a: DictionaryArray<Int32Type> = a.iter().map(Option::as_deref).collect();
let b: DictionaryArray<Int32Type> = b.iter().map(Option::as_deref).collect();
let c: DictionaryArray<Int32Type> = c.iter().map(Option::as_deref).collect();
let d: Int64Array = d.into_iter().collect();
let batch = RecordBatch::try_from_iter(vec![
("a", Arc::new(a) as _),
("b", Arc::new(b) as _),
("c", Arc::new(c) as _),
("d", Arc::new(d) as _),
])
.unwrap();
split_batch(batch)
}
/// Encapsulates creating data for this test
struct DataGenerator {
rng: StdRng,
}
impl DataGenerator {
fn new() -> Self {
Self {
rng: StdRng::seed_from_u64(42),
}
}
/// Create an array of i64 unsorted values (where approximately 1/3 values is repeated)
fn i64_values(&mut self) -> Vec<i64> {
(0..INPUT_SIZE)
.map(|_| self.rng.gen_range(0..INPUT_SIZE as i64))
.collect()
}
/// Create an array of f64 sorted values (with same distribution of `i64_values`)
fn f64_values(&mut self) -> Vec<f64> {
self.i64_values().into_iter().map(|v| v as f64).collect()
}
/// array of low cardinality (100 distinct) values
fn utf8_low_cardinality_values(&mut self) -> Vec<Option<Arc<str>>> {
let strings = (0..100)
.map(|s| format!("value{s}").into())
.collect::<Vec<_>>();
// pick from the 100 strings randomly
(0..INPUT_SIZE)
.map(|_| {
let idx = self.rng.gen_range(0..strings.len());
let s = Arc::clone(&strings[idx]);
Some(s)
})
.collect::<Vec<_>>()
}
/// Create values of high cardinality (~ no duplicates) utf8 values
fn utf8_high_cardinality_values(&mut self) -> Vec<Option<String>> {
// make random strings
(0..INPUT_SIZE)
.map(|_| Some(self.random_string()))
.collect::<Vec<_>>()
}
fn random_string(&mut self) -> String {
let rng = &mut self.rng;
rng.sample_iter(rand::distributions::Alphanumeric)
.filter(|c| c.is_ascii_alphabetic())
.take(20)
.map(char::from)
.collect::<String>()
}
}
/// Splits the `input_batch` randomly into `NUM_STREAMS` approximately evenly sorted streams
fn split_batch(input_batch: RecordBatch) -> Vec<Vec<RecordBatch>> {
// figure out which inputs go where
let mut rng = StdRng::seed_from_u64(1337);
// randomly assign rows to streams
let stream_assignments = (0..input_batch.num_rows())
.map(|_| rng.gen_range(0..NUM_STREAMS))
.collect();
// split the inputs into streams
(0..NUM_STREAMS)
.map(|stream| {
// make a "stream" of 1 record batch
vec![take_columns(&input_batch, &stream_assignments, stream)]
})
.collect::<Vec<_>>()
}
/// returns a record batch that contains all there values where
/// stream_assignment[i] = stream (aka this is the equivalent of
/// calling take(indicies) where indicies[i] == stream_index)
fn take_columns(
input_batch: &RecordBatch,
stream_assignments: &UInt64Array,
stream: u64,
) -> RecordBatch {
// find just the indicies needed from record batches to extract
let stream_indices: UInt64Array = stream_assignments
.iter()
.enumerate()
.filter_map(|(idx, stream_idx)| {
if stream_idx.unwrap() == stream {
Some(idx as u64)
} else {
None
}
})
.collect();
let options = Some(TakeOptions { check_bounds: true });
// now, get the columns from each array
let new_columns = input_batch
.columns()
.iter()
.map(|array| compute::take(array, &stream_indices, options.clone()).unwrap())
.collect();
RecordBatch::try_new(input_batch.schema(), new_columns).unwrap()
}
criterion_group!(benches, criterion_benchmark);
criterion_main!(benches);