forked from apache/datafusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
physical_expr.rs
434 lines (381 loc) · 14.8 KB
/
physical_expr.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use arrow::datatypes::{DataType, Schema};
use arrow::record_batch::RecordBatch;
use datafusion_common::{
ColumnStatistics, DataFusionError, Result, ScalarValue, Statistics,
};
use datafusion_expr::ColumnarValue;
use std::cmp::Ordering;
use std::fmt::{Debug, Display};
use arrow::array::{make_array, Array, ArrayRef, BooleanArray, MutableArrayData};
use arrow::compute::{and_kleene, filter_record_batch, is_not_null, SlicesIterator};
use crate::intervals::Interval;
use std::any::Any;
use std::sync::Arc;
/// Expression that can be evaluated against a RecordBatch
/// A Physical expression knows its type, nullability and how to evaluate itself.
pub trait PhysicalExpr: Send + Sync + Display + Debug + PartialEq<dyn Any> {
/// Returns the physical expression as [`Any`](std::any::Any) so that it can be
/// downcast to a specific implementation.
fn as_any(&self) -> &dyn Any;
/// Get the data type of this expression, given the schema of the input
fn data_type(&self, input_schema: &Schema) -> Result<DataType>;
/// Determine whether this expression is nullable, given the schema of the input
fn nullable(&self, input_schema: &Schema) -> Result<bool>;
/// Evaluate an expression against a RecordBatch
fn evaluate(&self, batch: &RecordBatch) -> Result<ColumnarValue>;
/// Evaluate an expression against a RecordBatch after first applying a
/// validity array
fn evaluate_selection(
&self,
batch: &RecordBatch,
selection: &BooleanArray,
) -> Result<ColumnarValue> {
let tmp_batch = filter_record_batch(batch, selection)?;
let tmp_result = self.evaluate(&tmp_batch)?;
// All values from the `selection` filter are true.
if batch.num_rows() == tmp_batch.num_rows() {
return Ok(tmp_result);
}
if let ColumnarValue::Array(a) = tmp_result {
let result = scatter(selection, a.as_ref())?;
Ok(ColumnarValue::Array(result))
} else {
Ok(tmp_result)
}
}
/// Get a list of child PhysicalExpr that provide the input for this expr.
fn children(&self) -> Vec<Arc<dyn PhysicalExpr>>;
/// Returns a new PhysicalExpr where all children were replaced by new exprs.
fn with_new_children(
self: Arc<Self>,
children: Vec<Arc<dyn PhysicalExpr>>,
) -> Result<Arc<dyn PhysicalExpr>>;
/// Return the boundaries of this expression. This method (and all the
/// related APIs) are experimental and subject to change.
fn analyze(&self, context: AnalysisContext) -> AnalysisContext {
context
}
/// Computes bounds for the expression using interval arithmetic.
fn evaluate_bounds(&self, _children: &[&Interval]) -> Result<Interval> {
Err(DataFusionError::NotImplemented(format!(
"Not implemented for {self}"
)))
}
/// Updates/shrinks bounds for the expression using interval arithmetic.
/// If constraint propagation reveals an infeasibility, returns [None] for
/// the child causing infeasibility. If none of the children intervals
/// change, may return an empty vector instead of cloning `children`.
fn propagate_constraints(
&self,
_interval: &Interval,
_children: &[&Interval],
) -> Result<Vec<Option<Interval>>> {
Err(DataFusionError::NotImplemented(format!(
"Not implemented for {self}"
)))
}
}
/// Shared [`PhysicalExpr`].
pub type PhysicalExprRef = Arc<dyn PhysicalExpr>;
/// The shared context used during the analysis of an expression. Includes
/// the boundaries for all known columns.
#[derive(Clone, Debug, PartialEq)]
pub struct AnalysisContext {
/// A list of known column boundaries, ordered by the index
/// of the column in the current schema.
pub column_boundaries: Vec<Option<ExprBoundaries>>,
// Result of the current analysis.
pub boundaries: Option<ExprBoundaries>,
}
impl AnalysisContext {
pub fn new(
input_schema: &Schema,
column_boundaries: Vec<Option<ExprBoundaries>>,
) -> Self {
assert_eq!(input_schema.fields().len(), column_boundaries.len());
Self {
column_boundaries,
boundaries: None,
}
}
/// Create a new analysis context from column statistics.
pub fn from_statistics(input_schema: &Schema, statistics: &Statistics) -> Self {
// Even if the underlying statistics object doesn't have any column level statistics,
// we can still create an analysis context with the same number of columns and see whether
// we can infer it during the way.
let column_boundaries = match &statistics.column_statistics {
Some(columns) => columns
.iter()
.map(ExprBoundaries::from_column)
.collect::<Vec<_>>(),
None => vec![None; input_schema.fields().len()],
};
Self::new(input_schema, column_boundaries)
}
pub fn boundaries(&self) -> Option<&ExprBoundaries> {
self.boundaries.as_ref()
}
/// Set the result of the current analysis.
pub fn with_boundaries(mut self, result: Option<ExprBoundaries>) -> Self {
self.boundaries = result;
self
}
/// Update the boundaries of a column.
pub fn with_column_update(
mut self,
column: usize,
boundaries: ExprBoundaries,
) -> Self {
self.column_boundaries[column] = Some(boundaries);
self
}
}
/// Represents the boundaries of the resulting value from a physical expression,
/// if it were to be an expression, if it were to be evaluated.
#[derive(Clone, Debug, PartialEq)]
pub struct ExprBoundaries {
/// Minimum value this expression's result can have.
pub min_value: ScalarValue,
/// Maximum value this expression's result can have.
pub max_value: ScalarValue,
/// Maximum number of distinct values this expression can produce, if known.
pub distinct_count: Option<usize>,
/// The estimated percantage of rows that this expression would select, if
/// it were to be used as a boolean predicate on a filter. The value will be
/// between 0.0 (selects nothing) and 1.0 (selects everything).
pub selectivity: Option<f64>,
}
impl ExprBoundaries {
/// Create a new `ExprBoundaries`.
pub fn new(
min_value: ScalarValue,
max_value: ScalarValue,
distinct_count: Option<usize>,
) -> Self {
Self::new_with_selectivity(min_value, max_value, distinct_count, None)
}
/// Create a new `ExprBoundaries` with a selectivity value.
pub fn new_with_selectivity(
min_value: ScalarValue,
max_value: ScalarValue,
distinct_count: Option<usize>,
selectivity: Option<f64>,
) -> Self {
assert!(!matches!(
min_value.partial_cmp(&max_value),
Some(Ordering::Greater)
));
Self {
min_value,
max_value,
distinct_count,
selectivity,
}
}
/// Create a new `ExprBoundaries` from a column level statistics.
pub fn from_column(column: &ColumnStatistics) -> Option<Self> {
Some(Self {
min_value: column.min_value.clone()?,
max_value: column.max_value.clone()?,
distinct_count: column.distinct_count,
selectivity: None,
})
}
/// Try to reduce the boundaries into a single scalar value, if possible.
pub fn reduce(&self) -> Option<ScalarValue> {
// TODO: should we check distinct_count is `Some(1) | None`?
if self.min_value == self.max_value {
Some(self.min_value.clone())
} else {
None
}
}
}
/// Returns a copy of this expr if we change any child according to the pointer comparison.
/// The size of `children` must be equal to the size of `PhysicalExpr::children()`.
/// Allow the vtable address comparisons for PhysicalExpr Trait Objects,it is harmless even
/// in the case of 'false-native'.
#[allow(clippy::vtable_address_comparisons)]
pub fn with_new_children_if_necessary(
expr: Arc<dyn PhysicalExpr>,
children: Vec<Arc<dyn PhysicalExpr>>,
) -> Result<Arc<dyn PhysicalExpr>> {
let old_children = expr.children();
if children.len() != old_children.len() {
Err(DataFusionError::Internal(
"PhysicalExpr: Wrong number of children".to_string(),
))
} else if children.is_empty()
|| children
.iter()
.zip(old_children.iter())
.any(|(c1, c2)| !Arc::ptr_eq(c1, c2))
{
expr.with_new_children(children)
} else {
Ok(expr)
}
}
pub fn down_cast_any_ref(any: &dyn Any) -> &dyn Any {
if any.is::<Arc<dyn PhysicalExpr>>() {
any.downcast_ref::<Arc<dyn PhysicalExpr>>()
.unwrap()
.as_any()
} else if any.is::<Box<dyn PhysicalExpr>>() {
any.downcast_ref::<Box<dyn PhysicalExpr>>()
.unwrap()
.as_any()
} else {
any
}
}
/// Scatter `truthy` array by boolean mask. When the mask evaluates `true`, next values of `truthy`
/// are taken, when the mask evaluates `false` values null values are filled.
///
/// # Arguments
/// * `mask` - Boolean values used to determine where to put the `truthy` values
/// * `truthy` - All values of this array are to scatter according to `mask` into final result.
fn scatter(mask: &BooleanArray, truthy: &dyn Array) -> Result<ArrayRef> {
let truthy = truthy.data();
// update the mask so that any null values become false
// (SlicesIterator doesn't respect nulls)
let mask = and_kleene(mask, &is_not_null(mask)?)?;
let mut mutable = MutableArrayData::new(vec![truthy], true, mask.len());
// the SlicesIterator slices only the true values. So the gaps left by this iterator we need to
// fill with falsy values
// keep track of how much is filled
let mut filled = 0;
// keep track of current position we have in truthy array
let mut true_pos = 0;
SlicesIterator::new(&mask).for_each(|(start, end)| {
// the gap needs to be filled with nulls
if start > filled {
mutable.extend_nulls(start - filled);
}
// fill with truthy values
let len = end - start;
mutable.extend(0, true_pos, true_pos + len);
true_pos += len;
filled = end;
});
// the remaining part is falsy
if filled < mask.len() {
mutable.extend_nulls(mask.len() - filled);
}
let data = mutable.freeze();
Ok(make_array(data))
}
#[macro_export]
// If the given expression is None, return the given context
// without setting the boundaries.
macro_rules! analysis_expect {
($context: ident, $expr: expr) => {
match $expr {
Some(expr) => expr,
None => return $context.with_boundaries(None),
}
};
}
#[cfg(test)]
mod tests {
use std::sync::Arc;
use super::*;
use arrow::array::Int32Array;
use datafusion_common::{
cast::{as_boolean_array, as_int32_array},
Result,
};
#[test]
fn scatter_int() -> Result<()> {
let truthy = Arc::new(Int32Array::from(vec![1, 10, 11, 100]));
let mask = BooleanArray::from(vec![true, true, false, false, true]);
// the output array is expected to be the same length as the mask array
let expected =
Int32Array::from_iter(vec![Some(1), Some(10), None, None, Some(11)]);
let result = scatter(&mask, truthy.as_ref())?;
let result = as_int32_array(&result)?;
assert_eq!(&expected, result);
Ok(())
}
#[test]
fn scatter_int_end_with_false() -> Result<()> {
let truthy = Arc::new(Int32Array::from(vec![1, 10, 11, 100]));
let mask = BooleanArray::from(vec![true, false, true, false, false, false]);
// output should be same length as mask
let expected =
Int32Array::from_iter(vec![Some(1), None, Some(10), None, None, None]);
let result = scatter(&mask, truthy.as_ref())?;
let result = as_int32_array(&result)?;
assert_eq!(&expected, result);
Ok(())
}
#[test]
fn scatter_with_null_mask() -> Result<()> {
let truthy = Arc::new(Int32Array::from(vec![1, 10, 11]));
let mask: BooleanArray = vec![Some(false), None, Some(true), Some(true), None]
.into_iter()
.collect();
// output should treat nulls as though they are false
let expected = Int32Array::from_iter(vec![None, None, Some(1), Some(10), None]);
let result = scatter(&mask, truthy.as_ref())?;
let result = as_int32_array(&result)?;
assert_eq!(&expected, result);
Ok(())
}
#[test]
fn scatter_boolean() -> Result<()> {
let truthy = Arc::new(BooleanArray::from(vec![false, false, false, true]));
let mask = BooleanArray::from(vec![true, true, false, false, true]);
// the output array is expected to be the same length as the mask array
let expected = BooleanArray::from_iter(vec![
Some(false),
Some(false),
None,
None,
Some(false),
]);
let result = scatter(&mask, truthy.as_ref())?;
let result = as_boolean_array(&result)?;
assert_eq!(&expected, result);
Ok(())
}
#[test]
fn reduce_boundaries() -> Result<()> {
let different_boundaries = ExprBoundaries::new(
ScalarValue::Int32(Some(1)),
ScalarValue::Int32(Some(10)),
None,
);
assert_eq!(different_boundaries.reduce(), None);
let scalar_boundaries = ExprBoundaries::new(
ScalarValue::Int32(Some(1)),
ScalarValue::Int32(Some(1)),
None,
);
assert_eq!(
scalar_boundaries.reduce(),
Some(ScalarValue::Int32(Some(1)))
);
// Can still reduce.
let no_boundaries =
ExprBoundaries::new(ScalarValue::Int32(None), ScalarValue::Int32(None), None);
assert_eq!(no_boundaries.reduce(), Some(ScalarValue::Int32(None)));
Ok(())
}
}