forked from apache/datafusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
udf.rs
43 lines (40 loc) · 1.57 KB
/
udf.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! UDF support
use crate::{PhysicalExpr, ScalarFunctionExpr};
use arrow::datatypes::Schema;
use datafusion_common::Result;
pub use datafusion_expr::ScalarUDF;
use std::sync::Arc;
/// Create a physical expression of the UDF.
/// This function errors when `args`' can't be coerced to a valid argument type of the UDF.
pub fn create_physical_expr(
fun: &ScalarUDF,
input_phy_exprs: &[Arc<dyn PhysicalExpr>],
input_schema: &Schema,
) -> Result<Arc<dyn PhysicalExpr>> {
let input_exprs_types = input_phy_exprs
.iter()
.map(|e| e.data_type(input_schema))
.collect::<Result<Vec<_>>>()?;
Ok(Arc::new(ScalarFunctionExpr::new(
&fun.name,
fun.fun.clone(),
input_phy_exprs.to_vec(),
(fun.return_type)(&input_exprs_types)?.as_ref(),
)))
}