-
Notifications
You must be signed in to change notification settings - Fork 5
/
utils.py
144 lines (110 loc) · 5.23 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import os
import yaml
import torch
import math
import numpy as np
import clip
from datasets.imagenet import ImageNet
from datasets import build_dataset
from datasets.utils import build_data_loader, AugMixAugmenter
import torchvision.transforms as transforms
from PIL import Image
try:
from torchvision.transforms import InterpolationMode
BICUBIC = InterpolationMode.BICUBIC
except ImportError:
BICUBIC = Image.BICUBIC
def get_entropy(loss, clip_weights):
max_entropy = math.log2(clip_weights.size(1))
return float(loss / max_entropy)
def softmax_entropy(x):
return -(x.softmax(1) * x.log_softmax(1)).sum(1)
def avg_entropy(outputs):
logits = outputs - outputs.logsumexp(dim=-1, keepdim=True)
avg_logits = logits.logsumexp(dim=0) - np.log(logits.shape[0])
min_real = torch.finfo(avg_logits.dtype).min
avg_logits = torch.clamp(avg_logits, min=min_real)
return -(avg_logits * torch.exp(avg_logits)).sum(dim=-1)
def cls_acc(output, target, topk=1):
pred = output.topk(topk, 1, True, True)[1].t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
acc = float(correct[: topk].reshape(-1).float().sum(0, keepdim=True).cpu().numpy())
acc = 100 * acc / target.shape[0]
return acc
def clip_classifier(classnames, template, clip_model):
with torch.no_grad():
clip_weights = []
for classname in classnames:
# Tokenize the prompts
classname = classname.replace('_', ' ')
texts = [t.format(classname) for t in template]
texts = clip.tokenize(texts).cuda()
# prompt ensemble for ImageNet
class_embeddings = clip_model.encode_text(texts)
class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True)
class_embedding = class_embeddings.mean(dim=0)
class_embedding /= class_embedding.norm()
clip_weights.append(class_embedding)
clip_weights = torch.stack(clip_weights, dim=1).cuda()
return clip_weights
def get_clip_logits(images, clip_model, clip_weights):
with torch.no_grad():
if isinstance(images, list):
images = torch.cat(images, dim=0).cuda()
else:
images = images.cuda()
image_features = clip_model.encode_image(images)
image_features /= image_features.norm(dim=-1, keepdim=True)
clip_logits = 100. * image_features @ clip_weights
if image_features.size(0) > 1:
batch_entropy = softmax_entropy(clip_logits)
selected_idx = torch.argsort(batch_entropy, descending=False)[:int(batch_entropy.size()[0] * 0.1)]
output = clip_logits[selected_idx]
image_features = image_features[selected_idx].mean(0).unsqueeze(0)
clip_logits = output.mean(0).unsqueeze(0)
loss = avg_entropy(output)
prob_map = output.softmax(1).mean(0).unsqueeze(0)
pred = int(output.mean(0).unsqueeze(0).topk(1, 1, True, True)[1].t())
else:
loss = softmax_entropy(clip_logits)
prob_map = clip_logits.softmax(1)
pred = int(clip_logits.topk(1, 1, True, True)[1].t()[0])
return image_features, clip_logits, loss, prob_map, pred
def get_ood_preprocess():
normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711])
base_transform = transforms.Compose([
transforms.Resize(224, interpolation=BICUBIC),
transforms.CenterCrop(224)])
preprocess = transforms.Compose([
transforms.ToTensor(),
normalize])
aug_preprocess = AugMixAugmenter(base_transform, preprocess, n_views=63, augmix=True)
return aug_preprocess
def get_config_file(config_path, dataset_name):
if dataset_name == "I":
config_name = "imagenet.yaml"
elif dataset_name in ["A", "V", "R", "S"]:
config_name = f"imagenet_{dataset_name.lower()}.yaml"
else:
config_name = f"{dataset_name}.yaml"
config_file = os.path.join(config_path, config_name)
with open(config_file, 'r') as file:
cfg = yaml.load(file, Loader=yaml.SafeLoader)
if not os.path.exists(config_file):
raise FileNotFoundError(f"The configuration file {config_file} was not found.")
return cfg
def build_test_data_loader(dataset_name, root_path, preprocess):
if dataset_name == 'I':
dataset = ImageNet(root_path, preprocess)
test_loader = torch.utils.data.DataLoader(dataset.test, batch_size=1, num_workers=8, shuffle=True)
elif dataset_name in ['A','V','R','S']:
preprocess = get_ood_preprocess()
dataset = build_dataset(f"imagenet-{dataset_name.lower()}", root_path)
test_loader = build_data_loader(data_source=dataset.test, batch_size=1, is_train=False, tfm=preprocess, shuffle=True)
elif dataset_name in ['caltech101','dtd','eurosat','fgvc','food101','oxford_flowers','oxford_pets','stanford_cars','sun397','ucf101']:
dataset = build_dataset(dataset_name, root_path)
test_loader = build_data_loader(data_source=dataset.test, batch_size=1, is_train=False, tfm=preprocess, shuffle=True)
else:
raise "Dataset is not from the chosen list"
return test_loader, dataset.classnames, dataset.template