-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmpsaTest.m
197 lines (150 loc) · 5.67 KB
/
mpsaTest.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
function tests = mpsaTest
% Unit tests for MPSA
%
%{
Copyright 2015-2016, University of Bergen.
This file is part of FVBiot.
FVBiot is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
FVBiot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this file. If not, see <http://www.gnu.org/licenses/>.
%}
tests = functiontests(localfunctions);
end
function setupOnce(testCase)
grids = {};
% 2D Cartesian, no perturbations
Nx = [2 2]; Nd = numel(Nx);
g = cartGrid(Nx); Nn = g.nodes.num;
grids{1} = computeGeometry(g);
% Perturbations
g.nodes.coords = g.nodes.coords + 0.5 * rand(Nn,Nd);
grids{2} = computeGeometry(g);
% 3D Cartesian, no perturbations
Nx = [3 3 3]; Nd = numel(Nx);
g = cartGrid(Nx); Nn = g.nodes.num;
grids{3} = computeGeometry(g);
% Perturbations
g.nodes.coords = g.nodes.coords + 0.5 * rand(Nn,Nd);
grids{4} = computeGeometry(g);
% Triangular grid
Nx = [5 5]; Nd = numel(Nx);
[X,Y] = meshgrid(linspace(0,Nx(1),Nx(1)+1), linspace(0,Nx(2),Nx(2)+1));
p = [X(:), Y(:)];
t = delaunayn(p);
g = triangleGrid(p, t); Nn = g.nodes.num;
grids{5} = computeGeometry(g);
% Perturbed triangles
g.nodes.coords = g.nodes.coords + 0.5 * rand(Nn,Nd);
grids{6} = computeGeometry(g);
% Tetrahedral grid
Nx = [2 2 2]; Nd = numel(Nx);
[X,Y,Z] = meshgrid(linspace(0,Nx(1),Nx(1)+1), linspace(0,Nx(2),Nx(2)+1),linspace(0,Nx(3),Nx(3)+1));
p = [X(:), Y(:), Z(:)];
t = delaunayn(p);
g = tetrahedralGrid(p, t); Nn = g.nodes.num;
grids{7} = computeGeometry(g);
% Perturbed triangles
g.nodes.coords = g.nodes.coords + 0.5 * rand(Nn,Nd);
grids{8} = computeGeometry(g);
testCase.TestData.grids = grids;
end
function translationTest(testCase)
mu = 100;
lambda = 100;
phi = 0;
grids = testCase.TestData.grids;
for iter1 = 1 : numel(grids);
% Not the most beautiful of setups, we could probably have used setup somehow
G = grids{iter1};
Nc = G.cells.num;
Nf = G.faces.num;
Nd = G.griddim;
xf = G.faces.centroids;
xc = G.cells.centroids;
% Pressure boundary conditions;
bc = addBC([],find(any(G.faces.neighbors == 0,2)),'pressure',0);
constit = shear_normal_stress(Nc, Nd, mu*ones(Nc,1), lambda*ones(Nc,1), phi*ones(Nc,1));
md = mpsa(G,constit,[],'bc',bc);
% Translation
r = rand(1,Nd);
db = ones(Nf,1) * r;
xan = ones(Nc,1) * r;
boundVal = -md.div * md.boundStress * reshape(db',[],1);
x = reshape((md.A \ boundVal)',Nd,[])';
assert(max(max(abs(x - xan)))<sqrt(eps),'MPSA failed on translation');
stress = md.stress * reshape(x',[],1) + md.boundStress * reshape(db',[],1);
assert(norm(stress) < sqrt(eps),'MPSA gave stress for translation')
end
end
function rotationTest(testCase)
mu = 100;
lambda = 100;
phi = 0;
grids = testCase.TestData.grids;
for iter1 = 1 : numel(grids);
% Not the most beautiful of setups, we could probably have used setup somehow
G = grids{iter1};
Nc = G.cells.num;
Nf = G.faces.num;
Nd = G.griddim;
xf = G.faces.centroids;
xc = G.cells.centroids;
% Pressure boundary conditions;
bc = addBC([],find(any(G.faces.neighbors == 0,2)),'pressure',0);
xn = G.nodes.coords;
if Nd == 2
ang = 180*rand(1);
rot = @(x) [x(:,1) * cosd(ang) - x(:,2) * sind(ang), x(:,1) * sind(ang) + x(:,2) * cosd(ang)];
else
ang = 180 * rand(3,1);
rotx = @(x) [x(:,1) , x(:,2) * cosd(ang(1)) - x(:,3) * sind(ang(1)), x(:,2) * sind(ang(1)) + x(:,3) * cosd(ang(1))];
roty = @(x) [x(:,1) * cosd(ang(2)) - x(:,3) * sind(ang(2)), x(:,2) , x(:,1) * sind(ang(2)) + x(:,3) * cosd(ang(2))];
rotz = @(x) [x(:,1) * cosd(ang(3)) - x(:,2) * sind(ang(3)), x(:,1) * sind(ang(3)) + x(:,3) * cosd(ang(3)), x(:,3)];
rot = @(x) rotz(roty(rotx(x)));
end
db = rot(xf) - xf;
xan = rot(xc) - xc;
constit = shear_normal_stress(Nc, Nd, mu*ones(Nc,1), lambda*ones(Nc,1), phi*ones(Nc,1));
md = mpsa(G,constit,[],'bc',bc,'eta',0);
x = reshape(-(md.A) \ md.div * md.boundStress * reshape(db',[],1),Nd,[])';
assert(max(max(abs(x - xan)))<sqrt(eps),'MPSA failed on rotation');
end
end
function uniformStrainTest(testCase)
mu = 100;
lambda = 100;
phi = 0;
grids = testCase.TestData.grids;
for iter1 = 1 : numel(grids);
% Not the most beautiful of setups, we could probably have used setup somehow
G = grids{iter1};
Nc = G.cells.num;
Nf = G.faces.num;
Nd = G.griddim;
xf = G.faces.centroids;
xc = G.cells.centroids;
% Pressure boundary conditions;
bc = addBC([],find(any(G.faces.neighbors == 0,2)),'pressure',0);
xn = G.nodes.coords;
% Uniform stress
r = rand(Nd,1);
db = bsxfun(@times,xf,r');
xan = bsxfun(@times,xc,r');
constit = shear_normal_stress(Nc, Nd, mu*ones(Nc,1), lambda*ones(Nc,1), phi*ones(Nc,1));
md = mpsa(G,constit,[], 'bc',bc);
x = reshape(-full(md.A) \ md.div * md.boundStress * reshape(db',[],1),Nd,[])';
assert(max(max(abs(x - xan)))<sqrt(eps),'MPSA failed on uniform stress');
stress = md.stress * reshape(x',[],1) + md.boundStress * reshape(db',[],1);
san = 2 * mu * r' + lambda * sum(r);
san = (ones(Nf,1) * san).*G.faces.normals;
s = reshape(stress',Nd,[])';
assert(max(max(abs(s - san))) < sqrt(eps),'MPSA failed on stress for uniform stretching')
end
end