Skip to content

Latest commit

 

History

History
56 lines (45 loc) · 1.93 KB

bach.md

File metadata and controls

56 lines (45 loc) · 1.93 KB

title: Bachelier Model author: Keith A. Lewis institute: KALX, LLC classoption: fleqn fleqn: true abstract: Normal stock price ...

\newcommand\mb[1]{\mathbf{#1}} \newcommand\RR{\boldsymbol{R}} \newcommand\Var{\operatorname{Var}} \newcommand\Cov{\operatorname{Cov}}

The Bachelier model assumes stock price has the form $F_t = f + \sigma B_t$ where $f$ and $\sigma$ are constants and $B_t$ is standard Brownian motion, assuming zero interest rate.

The risk-neutral value of a put with strike $k$ expiring at $t$ is $$ E[(k - F_t)^+] = E[(k - F)1(F\le k)] = E[k - F]P(F \le k) + \Cov(k - F, 1(F\le k)). $$

Exercise. Show if $M$ and $N$ are jointly normal then $\Cov(M, g(N)) = \Cov(M, N) E[g'(N)]$.

Hint: Use $E[e^{\alpha N} g(M)] = E[e^{\alpha N}] E[g(M + \Cov(\alpha N, M))]$, take a derivative with respect to $\alpha$, then set it equal to 0.

This shows ${\Cov(k - F, 1(F\le k)) = \Cov(k - F, F) E[-\delta_k(F)] = \Var(F) E[\delta_k(F)]}$.

Exercise Show $E[\delta_a(b + cZ)] = \phi((a - b)/c)/c$ if $\phi$ is the density function of $Z$.

Solution If $d_a(x) = 1/h$ for $a < x \le a + h$ and 0 otherwise then ${E[\delta_a(b + cZ)] = \lim_{h\to 0} E[d_a(b + c Z)].}$ Using $y = (b + cz)/c = b/c + z$ we have $$ \begin{aligned} E[d_a(b + c Z)] &= (1/h)\int_a^{a+h} (b + cz)\phi(z)\,dz \\ &= (1/h)\int_{b/c + a}^{b/c + a + h} cy\phi(y - b/c)\,dy \\ \end{aligned} $$

If $g$ is differentiable at $z = g^{-1}(a)$ then ${E[\delta_a(g(Z))] = \phi(z)/g'(z)}$ since ${g(x) \approx g(z) + g'(z)(x - z)}$ for ${z\approx x}$.

We have ${E[\delta_k(F)] = E[\delta_k(f + \sigma\sqrt{t}Z)] = \phi(z)/\sigma\sqrt{t}}$, where $Z$ is standard normal and ${z = (k - f)/\sigma\sqrt{t}}$ so $$ E[(k - F_t)^+] = (k - F)\Phi(z) + \sigma\sqrt{t}\phi(z) $$ where $\Phi$ is the standard normal cumulative distribution function and $\phi = \Phi'$.

Exercise. Show $E[(F_t - k)^+] = (f - k)\Phi(-z) + \sigma\sqrt{t}\phi(-z)$.