From a6da92494273c0a2f1e9763ea5dfb1352ddb348c Mon Sep 17 00:00:00 2001 From: "Keith A. Lewis" Date: Mon, 4 Nov 2024 01:31:31 -0500 Subject: [PATCH] sync --- _py.md | 25 +++++++++++++++++++++++++ 1 file changed, 25 insertions(+) create mode 100644 _py.md diff --git a/_py.md b/_py.md new file mode 100644 index 0000000..3fb38d9 --- /dev/null +++ b/_py.md @@ -0,0 +1,25 @@ +--- +title: Unwind Value +author: Keith A. Lewis +institution: KALX, LLC +email: kal@kalx.net +--- + +Let $S_t = S_0\exp(\mu t + \sigma B_t - \sigma^2t/2)$ be geometric Brownian motion +and $\overline{S}_t = \max_{0\le u\le t} S_u$ be its running maximum. + +Let $t_0,\ldots,t_n$ be permitted _unwind_ times, $T$ a _horizon_ time, and $L$ a draw-down limit. +Define the unwind (stopping) time $\tau = \min\{t_j\mid \overline{S}_{t_j} - S_{t_j} > L\}$ +and $\tau\wedge T = \min\{\tau, T\}$. + +Calculate $P(\tau < T)$ (unwind before horizon), $fE[e^{-r(\tau\wedge T)}(\tau\wedge T)]$ +(expected discounted time to the earlier of unwind or horizon) where $f$ is a fee and $r$ is the risk-free rate. + +Input variables: $S_0$, $r$, $\sigma$, $(t_j)$, $T$, $L$, $IR$ (information ratio) + +Dependent variables: $\mu = IR \sigma$. + +Typically the $t_j$ are end of month dates and $T$ is 1 or 2 years. + +Create a table for $IR\in\{0.5, 1, 1.5\}$ and $L = \{5, 7.5, 10\}$ with $S_0 = 100$, +$\sigma = 5\%$, $r = 4.5\%$, and $f = 1\%$.