-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmohex_q_learn.py
368 lines (332 loc) · 11.2 KB
/
mohex_q_learn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import theano
from lasagne.updates import rmsprop
from theano import tensor as T
import numpy as np
import numpy.random as rand
from inputFormat import *
from network import network
import matplotlib.pyplot as plt
import cPickle
import argparse
import time
import os
from program import Program
import threading
class agent:
def __init__(self, exe):
self.exe = exe
self.program = Program(self.exe, True)
self.name = self.program.sendCommand("name").strip()
self.lock = threading.Lock()
def sendCommand(self, command):
self.lock.acquire()
answer = self.program.sendCommand(command)
self.lock.release()
return answer
def reconnect(self):
self.program.terminate()
self.program = Program(self.exe,True)
self.lock = threading.Lock()
def save():
print "saving network..."
if args.save:
save_name = args.save
else:
save_name = "Q_network.save"
if args.data:
f = file(args.data+"/"+save_name, 'wb')
else:
f = file(save_name, 'wb')
cPickle.dump(network, f, protocol=cPickle.HIGHEST_PROTOCOL)
f.close()
if args.data:
f = file(args.data+"/replay_mem.save", 'wb')
cPickle.dump(mem, f, protocol=cPickle.HIGHEST_PROTOCOL)
f.close()
f = file(args.data+"/costs.save","wb")
cPickle.dump(costs, f, protocol=cPickle.HIGHEST_PROTOCOL)
f.close()
f = file(args.data+"/values.save","wb")
cPickle.dump(values, f, protocol=cPickle.HIGHEST_PROTOCOL)
f.close()
def snapshot():
if not args.data:
return
print "saving network snapshot..."
index = 0
save_name = args.data+"/snapshot_"+str(index)+".save"
while os.path.exists(save_name):
index+=1
save_name = args.data+"/snapshot_"+str(index)+".save"
f = file(save_name, 'wb')
cPickle.dump(network, f, protocol=cPickle.HIGHEST_PROTOCOL)
f.close()
def running_mean(x, N):
cumsum = np.cumsum(np.insert(x, 0, 0))
return (cumsum[N:] - cumsum[:-N]) / N
def show_plots():
plt.figure(0)
plt.plot(running_mean(costs,50))
plt.ylabel('cost')
plt.xlabel('episode')
plt.draw()
plt.pause(0.001)
plt.figure(1)
plt.plot(running_mean(values,50))
plt.ylabel('value')
plt.xlabel('episode')
plt.draw()
plt.pause(0.001)
def epsilon_greedy_policy(state, evaluator):
rand = np.random.random()
played = np.logical_or(state[white,padding:boardsize+padding,padding:boardsize+padding],\
state[black,padding:boardsize+padding,padding:boardsize+padding]).flatten()
if(rand>epsilon_q):
scores = evaluator(state)
#set value of played cells impossibly low so they are never picked
scores[played] = -2
#np.set_printoptions(precision=3, linewidth=100)
print scores.max()
return scores.argmax(), scores.max()
#choose random open cell
return np.random.choice(np.arange(boardsize*boardsize)[np.logical_not(played)]), 0
def softmax(x, t):
"""Compute softmax values for each sets of scores in x."""
e_x = np.exp((x - np.max(x))/t)
return e_x / e_x.sum()
def softmax_policy(state, evaluator, temperature=1):
rand = np.random.random()
not_played = np.logical_not(np.logical_or(state[white,padding:boardsize+padding,padding:boardsize+padding],\
state[black,padding:boardsize+padding,padding:boardsize+padding])).flatten()
scores = evaluator(state)
prob = softmax(scores[not_played], temperature)
tot = 0
choice = None
for i in range(prob.size):
tot += prob[i]
if(tot>rand):
choice = i
break
return not_played.nonzero()[0][choice], scores.max()
def Q_update():
states1, actions, rewards, states2 = mem.sample_batch(batch_size)
scores = evaluate_model_batch(states2)
played = np.logical_or(states2[:,white,padding:boardsize+padding,padding:boardsize+padding],\
states2[:,black,padding:boardsize+padding,padding:boardsize+padding]).reshape(scores.shape)
#set value of played cells impossibly low so they are never picked
scores[played] = -2
targets = np.zeros(rewards.size).astype(theano.config.floatX)
targets[rewards==1] = 1
targets[rewards==0] = -np.amax(scores, axis=1)[rewards==0]
cost = train_model(states1,targets,actions)
return cost
def action_to_cell(action):
cell = np.unravel_index(action, (boardsize,boardsize))
return(cell[0]+padding, cell[1]+padding)
def move_to_action(move):
move_cell = cell(move)
return move_cell[1]-padding+boardsize*(move_cell[0]-padding)
def flip_action(action):
return boardsize*boardsize-1-action
class replay_memory:
def __init__(self, capacity):
self.capacity = capacity
self.size = 0
self.index = 0
self.full = False
self.state1_memory = np.zeros(np.concatenate(([capacity], input_shape)), dtype=bool)
self.action_memory = np.zeros(capacity, dtype=np.uint8)
self.reward_memory = np.zeros(capacity, dtype=bool)
self.state2_memory = np.zeros(np.concatenate(([capacity], input_shape)), dtype=bool)
def add_entry(self, state1, action, reward, state2):
self.state1_memory[self.index, :, :] = state1
self.state2_memory[self.index, :, :] = state2
self.action_memory[self.index] = action
self.reward_memory[self.index] = reward
self.index += 1
if(self.index>=self.capacity):
self.full = True
self.index = 0
if not self.full:
self.size += 1
def sample_batch(self, size):
batch = np.random.choice(np.arange(0,self.size), size=size)
states1 = self.state1_memory[batch]
states2 = self.state2_memory[batch]
actions = self.action_memory[batch]
rewards = self.reward_memory[batch]
return (states1, actions, rewards, states2)
mohex_exe = "/home/kenny/Hex/benzene-vanilla/benzene/src/mohex/mohex 2>/dev/null"
mohex = agent(mohex_exe)
#set search time for mohex to 1s
mohex.sendCommand("param_mohex max_time 1")
parser = argparse.ArgumentParser()
parser.add_argument("--load", "-l", type=str, help="Specify a file with a prebuilt network to load.")
parser.add_argument("--save", "-s", type=str, help="Specify a file to save trained network to.")
parser.add_argument("--data", "-d", type =str, help="Specify a directory to save/load data for this run.")
args = parser.parse_args()
#save network every x minutes during training
save_time = 60
#save snapshot of network to unique file every x minutes during training
snapshot_time = 480
print "loading starting positions... "
datafile = open("data/scoredPositionsFull.npz", 'r')
data = np.load(datafile)
positions = data['positions']
datafile.close()
numPositions = len(positions)
input_state = T.tensor3('input_state')
state_batch = T.tensor4('state_batch')
target_batch = T.dvector('target_batch')
action_batch = T.ivector('action_batch')
replay_capacity = 100000
if args.data:
if not os.path.exists(args.data):
os.makedirs(args.data)
mem = replay_memory(replay_capacity)
costs = []
values = []
else:
if os.path.exists(args.data+"/replay_mem.save"):
print "loading replay memory..."
f = file(args.data+"/replay_mem.save")
mem = cPickle.load(f)
f.close
else:
#replay memory from which updates are drawn
mem = replay_memory(replay_capacity)
if os.path.exists(args.data+"/costs.save"):
f = file(args.data+"/costs.save")
costs = cPickle.load(f)
f.close
else:
costs = []
if os.path.exists(args.data+"/values.save"):
f = file(args.data+"/values.save")
values = cPickle.load(f)
f.close
else:
values = []
else:
#replay memory from which updates are drawn
mem = replay_memory(replay_capacity)
costs = []
values = []
numEpisodes = 100000
batch_size = 64
#if load parameter is passed load a network from a file
if args.load:
print "loading model..."
f = file(args.load, 'rb')
network = cPickle.load(f)
if(network.batch_size):
batch_size = network.batch_size
f.close()
else:
print "building model..."
#use batchsize none now so that we can easily use same network for picking single moves and evaluating batches
network = network(batch_size=None)
print "network size: "+str(network.mem_size.eval())
evaluate_model_single = theano.function(
[input_state],
network.output[0],
givens={
network.input: input_state.dimshuffle('x', 0, 1, 2),
}
)
evaluate_model_batch = theano.function(
[state_batch],
network.output,
givens={
network.input: state_batch,
}
)
cost = T.mean(T.sqr(network.output[T.arange(target_batch.shape[0]),action_batch] - target_batch))
alpha = 0.001
rho = 0.9
epsilon = 1e-6
updates = rmsprop(cost, network.params, alpha, rho, epsilon)
train_model = theano.function(
[state_batch,target_batch,action_batch],
cost,
updates = updates,
givens={
network.input: state_batch,
}
)
print "Running episodes..."
#try zero epsilon for this as we can simply learn from mohexs' moves to some degree
epsilon_q = 0.0
last_save = time.clock()
last_snapshot = time.clock()
show_plots()
try:
for i in range(numEpisodes):
cost = 0
num_step = 0
value_sum = 0
#randomly choose who is to move from each position to increase variability in dataset
move_parity = np.random.choice([True,False])
#start game with random move from open board each time
gameW = new_game()
move_cell = action_to_cell(np.random.choice(np.arange(boardsize*boardsize)))
play_cell(gameW, move_cell if move_parity else cell_m(move_cell), white if move_parity else black)
gameB = mirror_game(gameW)
mohex.reconnect()
mohex.sendCommand("param_mohex max_time 1")
mohex.sendCommand("clear_board")
mohex.sendCommand("play "+("black " if move_parity else "white ")+(move(cell_m(move_cell)) if move_parity else move(move_cell)))
move_parity = not move_parity
t = time.clock()
resign_flag = False
while(winner(gameW)==None and not resign_flag):
if(move_parity):
action, value = epsilon_greedy_policy(gameW, evaluate_model_single)
mohex.sendCommand("play black "+move(cell_m(action_to_cell(action))))
value_sum+=abs(value)
else:
move_str = mohex.sendCommand("genmove white").strip()
if move_str == "resign":
resign_flag = True
else:
action = move_to_action(move_str)
state1 = np.copy(gameW if move_parity else gameB)
if(not resign_flag):
move_cell = action_to_cell(action)
play_cell(gameW, move_cell if move_parity else cell_m(move_cell), white if move_parity else black)
play_cell(gameB, cell_m(move_cell) if move_parity else move_cell, black if move_parity else white)
print state_string(gameW)
if resign_flag:
reward = -1
elif(not winner(gameW)==None):
#only the player who just moved can win, so if anyone wins the reward is 1
#for the current player
reward = 1
else:
reward = 0
#randomly flip states to capture symmetry
if(np.random.choice([True,False])):
state2 = np.copy(gameB if move_parity else gameW)
else:
state2 = flip_game(gameB if move_parity else gameW)
move_parity = not move_parity
mem.add_entry(state1, action, reward, state2)
if(mem.size > batch_size):
cost += Q_update()
num_step += 1
if(time.clock()-last_save > 60*save_time):
save()
show_plots()
last_save = time.clock()
if(time.clock()-last_snapshot > 60*snapshot_time):
snapshot()
last_snapshot = time.clock()
run_time = time.clock() - t
print "Episode", i, "complete, cost: ", 0 if num_step == 0 else cost/num_step, " Time per move: ", 0 if num_step == 0 else run_time/num_step, "Average value magnitude: ", 0 if num_step == 0 else value_sum/num_step
costs.append(0 if num_step == 0 else cost/num_step)
values.append(0 if num_step == 0 else value_sum*2/num_step)
except KeyboardInterrupt:
#save snapshot of network if we interrupt so we can pickup again later
save()
exit(1)
save()