Skip to content

Latest commit

 

History

History
381 lines (322 loc) · 7.48 KB

File metadata and controls

381 lines (322 loc) · 7.48 KB

中文文档

Description

Given the root of an n-ary tree, return the postorder traversal of its nodes' values.

Nary-Tree input serialization is represented in their level order traversal. Each group of children is separated by the null value (See examples)

 

Example 1:

Input: root = [1,null,3,2,4,null,5,6]
Output: [5,6,3,2,4,1]

Example 2:

Input: root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14]
Output: [2,6,14,11,7,3,12,8,4,13,9,10,5,1]

 

Constraints:

  • The number of nodes in the tree is in the range [0, 104].
  • 0 <= Node.val <= 104
  • The height of the n-ary tree is less than or equal to 1000.

 

Follow up: Recursive solution is trivial, could you do it iteratively?

Solutions

Python3

"""
# Definition for a Node.
class Node:
    def __init__(self, val=None, children=None):
        self.val = val
        self.children = children
"""


class Solution:
    def postorder(self, root: 'Node') -> List[int]:
        def dfs(root):
            if root is None:
                return
            for child in root.children:
                dfs(child)
            ans.append(root.val)

        ans = []
        dfs(root)
        return ans
"""
# Definition for a Node.
class Node:
    def __init__(self, val=None, children=None):
        self.val = val
        self.children = children
"""


class Solution:
    def postorder(self, root: 'Node') -> List[int]:
        ans = []
        if root is None:
            return ans
        stk = [root]
        while stk:
            node = stk.pop()
            ans.append(node.val)
            for child in node.children:
                stk.append(child)
        return ans[::-1]

Java

/*
// Definition for a Node.
class Node {
    public int val;
    public List<Node> children;

    public Node() {}

    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, List<Node> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {

    private List<Integer> ans;

    public List<Integer> postorder(Node root) {
        ans = new ArrayList<>();
        dfs(root);
        return ans;
    }

    private void dfs(Node root) {
        if (root == null) {
            return;
        }
        for (Node child : root.children) {
            dfs(child);
        }
        ans.add(root.val);
    }
}
/*
// Definition for a Node.
class Node {
    public int val;
    public List<Node> children;

    public Node() {}

    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, List<Node> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
    public List<Integer> postorder(Node root) {
        LinkedList<Integer> ans = new LinkedList<>();
        if (root == null) {
            return ans;
        }
        Deque<Node> stk = new ArrayDeque<>();
        stk.offer(root);
        while (!stk.isEmpty()) {
            root = stk.pollLast();
            ans.addFirst(root.val);
            for (Node child : root.children) {
                stk.offer(child);
            }
        }
        return ans;
    }
}

C++

/*
// Definition for a Node.
class Node {
public:
    int val;
    vector<Node*> children;

    Node() {}

    Node(int _val) {
        val = _val;
    }

    Node(int _val, vector<Node*> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
public:
    vector<int> postorder(Node* root) {
        vector<int> ans;
        dfs(root, ans);
        return ans;
    }

    void dfs(Node* root, vector<int>& ans) {
        if (!root) return;
        for (auto& child : root->children) dfs(child, ans);
        ans.push_back(root->val);
    }
};
/*
// Definition for a Node.
class Node {
public:
    int val;
    vector<Node*> children;

    Node() {}

    Node(int _val) {
        val = _val;
    }

    Node(int _val, vector<Node*> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
public:
    vector<int> postorder(Node* root) {
        vector<int> ans;
        if (!root) return ans;
        stack<Node*> stk{{root}};
        while (!stk.empty())
        {
            root = stk.top();
            ans.push_back(root->val);
            stk.pop();
            for (Node* child : root->children) stk.push(child);
        }
        reverse(ans.begin(), ans.end());
        return ans;
    }
};

Go

/**
 * Definition for a Node.
 * type Node struct {
 *     Val int
 *     Children []*Node
 * }
 */

func postorder(root *Node) []int {
	var ans []int
	var dfs func(root *Node)
	dfs = func(root *Node) {
		if root == nil {
			return
		}
		for _, child := range root.Children {
			dfs(child)
		}
		ans = append(ans, root.Val)
	}
	dfs(root)
	return ans
}
/**
 * Definition for a Node.
 * type Node struct {
 *     Val int
 *     Children []*Node
 * }
 */

func postorder(root *Node) []int {
	var ans []int
	if root == nil {
		return ans
	}
	stk := []*Node{root}
	for len(stk) > 0 {
		root = stk[len(stk)-1]
		stk = stk[:len(stk)-1]
		ans = append([]int{root.Val}, ans...)
		for _, child := range root.Children {
			stk = append(stk, child)
		}
	}
	return ans
}

TypeScript

/**
 * Definition for node.
 * class Node {
 *     val: number
 *     children: Node[]
 *     constructor(val?: number) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.children = []
 *     }
 * }
 */

function postorder(root: Node | null): number[] {
    const res = [];
    const dfs = (root: Node | null) => {
        if (root == null) {
            return;
        }
        for (const node of root.children) {
            dfs(node);
        }
        res.push(root.val);
    };
    dfs(root);
    return res;
}
/**
 * Definition for node.
 * class Node {
 *     val: number
 *     children: Node[]
 *     constructor(val?: number) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.children = []
 *     }
 * }
 */

function postorder(root: Node | null): number[] {
    const res = [];
    if (root == null) {
        return res;
    }
    const stack = [root];
    while (stack.length !== 0) {
        const target = stack[stack.length - 1];
        if (target.children == null) {
            res.push(stack.pop().val);
        } else {
            for (let i = target.children.length - 1; i >= 0; i--) {
                stack.push(target.children[i]);
            }
            target.children = null;
        }
    }
    return res;
}

...