Skip to content

Latest commit

 

History

History
144 lines (118 loc) · 3.23 KB

File metadata and controls

144 lines (118 loc) · 3.23 KB

中文文档

Description

Given four integers sx, sy, tx, and ty, return true if it is possible to convert the point (sx, sy) to the point (tx, ty) through some operations, or false otherwise.

The allowed operation on some point (x, y) is to convert it to either (x, x + y) or (x + y, y).

 

Example 1:

Input: sx = 1, sy = 1, tx = 3, ty = 5
Output: true
Explanation:
One series of moves that transforms the starting point to the target is:
(1, 1) -> (1, 2)
(1, 2) -> (3, 2)
(3, 2) -> (3, 5)

Example 2:

Input: sx = 1, sy = 1, tx = 2, ty = 2
Output: false

Example 3:

Input: sx = 1, sy = 1, tx = 1, ty = 1
Output: true

 

Constraints:

  • 1 <= sx, sy, tx, ty <= 109

Solutions

Python3

class Solution:
    def reachingPoints(self, sx: int, sy: int, tx: int, ty: int) -> bool:
        while tx > sx and ty > sy and tx != ty:
            if tx > ty:
                tx %= ty
            else:
                ty %= tx
        if tx == sx and ty == sy:
            return True
        if tx == sx:
            return ty > sy and (ty - sy) % tx == 0
        if ty == sy:
            return tx > sx and (tx - sx) % ty == 0
        return False

Java

class Solution {
    public boolean reachingPoints(int sx, int sy, int tx, int ty) {
        while (tx > sx && ty > sy && tx != ty) {
            if (tx > ty) {
                tx %= ty;
            } else {
                ty %= tx;
            }
        }
        if (tx == sx && ty == sy) {
            return true;
        }
        if (tx == sx) {
            return ty > sy && (ty - sy) % tx == 0;
        }
        if (ty == sy) {
            return tx > sx && (tx - sx) % ty == 0;
        }
        return false;
    }
}

C++

class Solution {
public:
    bool reachingPoints(int sx, int sy, int tx, int ty) {
        while (tx > sx && ty > sy && tx != ty) {
            if (tx > ty)
                tx %= ty;
            else
                ty %= tx;
        }
        if (tx == sx && ty == sy) return true;
        if (tx == sx) return ty > sy && (ty - sy) % tx == 0;
        if (ty == sy) return tx > sx && (tx - sx) % ty == 0;
        return false;
    }
};

Go

func reachingPoints(sx int, sy int, tx int, ty int) bool {
	for tx > sx && ty > sy && tx != ty {
		if tx > ty {
			tx %= ty
		} else {
			ty %= tx
		}
	}
	if tx == sx && ty == sy {
		return true
	}
	if tx == sx {
		return ty > sy && (ty-sy)%tx == 0
	}
	if ty == sy {
		return tx > sx && (tx-sx)%ty == 0
	}
	return false
}

...