There is a 1 million by 1 million grid on an XY-plane, and the coordinates of each grid square are (x, y)
.
We start at the source = [sx, sy]
square and want to reach the target = [tx, ty]
square. There is also an array of blocked
squares, where each blocked[i] = [xi, yi]
represents a blocked square with coordinates (xi, yi)
.
Each move, we can walk one square north, east, south, or west if the square is not in the array of blocked
squares. We are also not allowed to walk outside of the grid.
Return true
if and only if it is possible to reach the target
square from the source
square through a sequence of valid moves.
Example 1:
Input: blocked = [[0,1],[1,0]], source = [0,0], target = [0,2] Output: false Explanation: The target square is inaccessible starting from the source square because we cannot move. We cannot move north or east because those squares are blocked. We cannot move south or west because we cannot go outside of the grid.
Example 2:
Input: blocked = [], source = [0,0], target = [999999,999999] Output: true Explanation: Because there are no blocked cells, it is possible to reach the target square.
Constraints:
0 <= blocked.length <= 200
blocked[i].length == 2
0 <= xi, yi < 106
source.length == target.length == 2
0 <= sx, sy, tx, ty < 106
source != target
- It is guaranteed that
source
andtarget
are not blocked.
class Solution:
def isEscapePossible(
self, blocked: List[List[int]], source: List[int], target: List[int]
) -> bool:
def dfs(source, target, seen):
x, y = source
if (
not (0 <= x < 10**6 and 0 <= y < 10**6)
or (x, y) in blocked
or (x, y) in seen
):
return False
seen.add((x, y))
if len(seen) > 20000 or source == target:
return True
for a, b in [[0, -1], [0, 1], [1, 0], [-1, 0]]:
next = [x + a, y + b]
if dfs(next, target, seen):
return True
return False
blocked = set((x, y) for x, y in blocked)
return dfs(source, target, set()) and dfs(target, source, set())
class Solution {
private int[][] dirs = new int[][] {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
private static final int N = (int) 1e6;
private Set<Integer> blocked;
public boolean isEscapePossible(int[][] blocked, int[] source, int[] target) {
this.blocked = new HashSet<>();
for (int[] b : blocked) {
this.blocked.add(b[0] * N + b[1]);
}
return dfs(source, target, new HashSet<>()) && dfs(target, source, new HashSet<>());
}
private boolean dfs(int[] source, int[] target, Set<Integer> seen) {
int sx = source[0], sy = source[1];
int tx = target[0], ty = target[1];
if (sx < 0 || sx >= N || sy < 0 || sy >= N || tx < 0 || tx >= N || ty < 0 || ty >= N
|| blocked.contains(sx * N + sy) || seen.contains(sx * N + sy)) {
return false;
}
seen.add(sx * N + sy);
if (seen.size() > 20000 || (sx == target[0] && sy == target[1])) {
return true;
}
for (int[] dir : dirs) {
if (dfs(new int[] {sx + dir[0], sy + dir[1]}, target, seen)) {
return true;
}
}
return false;
}
}
typedef unsigned long long ULL;
class Solution {
public:
vector<vector<int>> dirs = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};
unordered_set<ULL> blocked;
int N = 1e6;
bool isEscapePossible(vector<vector<int>>& blocked, vector<int>& source, vector<int>& target) {
this->blocked.clear();
for (auto& b : blocked) this->blocked.insert((ULL)b[0] * N + b[1]);
unordered_set<ULL> s1;
unordered_set<ULL> s2;
return dfs(source, target, s1) && dfs(target, source, s2);
}
bool dfs(vector<int>& source, vector<int>& target, unordered_set<ULL>& seen) {
int sx = source[0], sy = source[1];
int tx = target[0], ty = target[1];
if (sx < 0 || sx >= N || sy < 0 || sy >= N || tx < 0 || tx >= N || ty < 0 || ty >= N || blocked.count((ULL)sx * N + sy) || seen.count((ULL)sx * N + sy)) return 0;
seen.insert((ULL)sx * N + sy);
if (seen.size() > 20000 || (sx == target[0] && sy == target[1])) return 1;
for (auto& dir : dirs) {
vector<int> next = {sx + dir[0], sy + dir[1]};
if (dfs(next, target, seen)) return 1;
}
return 0;
}
};
func isEscapePossible(blocked [][]int, source []int, target []int) bool {
const N = 1e6
dirs := [4][2]int{{0, -1}, {0, 1}, {1, 0}, {-1, 0}}
block := make(map[int]bool)
for _, b := range blocked {
block[b[0]*N+b[1]] = true
}
var dfs func(source, target []int, seen map[int]bool) bool
dfs = func(source, target []int, seen map[int]bool) bool {
sx, sy := source[0], source[1]
tx, ty := target[0], target[1]
if sx < 0 || sx >= N || sy < 0 || sy >= N || tx < 0 || tx >= N || ty < 0 || ty >= N || block[sx*N+sy] || seen[sx*N+sy] {
return false
}
seen[sx*N+sy] = true
if len(seen) > 20000 || (sx == target[0] && sy == target[1]) {
return true
}
for _, dir := range dirs {
next := []int{sx + dir[0], sy + dir[1]}
if dfs(next, target, seen) {
return true
}
}
return false
}
s1, s2 := make(map[int]bool), make(map[int]bool)
return dfs(source, target, s1) && dfs(target, source, s2)
}
use std::collections::{HashSet, VecDeque};
const BOUNDARY: i32 = 1_000_000;
const MAX: usize = 20000;
impl Solution {
pub fn is_escape_possible(blocked: Vec<Vec<i32>>, source: Vec<i32>, target: Vec<i32>) -> bool {
let mut block = HashSet::with_capacity(blocked.len());
for b in blocked.iter() {
block.insert((b[0], b[1]));
}
bfs(&block, &source, &target) && bfs(&block, &target, &source)
}
}
fn bfs(block: &HashSet<(i32, i32)>, source: &Vec<i32>, target: &Vec<i32>) -> bool {
let dir = vec![(-1, 0), (1, 0), (0, -1), (0, 1)];
let mut queue = VecDeque::new();
let mut vis = HashSet::new();
queue.push_back((source[0], source[1]));
vis.insert((source[0], source[1]));
while !queue.is_empty() && vis.len() < MAX {
let (x, y) = queue.pop_front().unwrap();
if x == target[0] && y == target[1] {
return true;
}
for (dx, dy) in dir.iter() {
let (nx, ny) = (x + dx, y + dy);
if nx < 0
|| nx >= BOUNDARY
|| ny < 0
|| ny >= BOUNDARY
|| vis.contains(&(nx, ny))
|| block.contains(&(nx, ny))
{
continue;
}
queue.push_back((nx, ny));
vis.insert((nx, ny));
}
}
vis.len() >= MAX
}