You are given a 0-indexed integer array nums
. In one operation you can replace any element of the array with any two elements that sum to it.
- For example, consider
nums = [5,6,7]
. In one operation, we can replacenums[1]
with2
and4
and convertnums
to[5,2,4,7]
.
Return the minimum number of operations to make an array that is sorted in non-decreasing order.
Example 1:
Input: nums = [3,9,3] Output: 2 Explanation: Here are the steps to sort the array in non-decreasing order: - From [3,9,3], replace the 9 with 3 and 6 so the array becomes [3,3,6,3] - From [3,3,6,3], replace the 6 with 3 and 3 so the array becomes [3,3,3,3,3] There are 2 steps to sort the array in non-decreasing order. Therefore, we return 2.
Example 2:
Input: nums = [1,2,3,4,5] Output: 0 Explanation: The array is already in non-decreasing order. Therefore, we return 0.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 109
class Solution:
def minimumReplacement(self, nums: List[int]) -> int:
ans, n = 0, len(nums)
mi = nums[-1]
for i in range(n - 2, -1, -1):
v = nums[i]
if v <= mi:
mi = v
continue
k = (v + mi - 1) // mi
ans += k - 1
mi = v // k
return ans
class Solution {
public long minimumReplacement(int[] nums) {
long ans = 0;
int n = nums.length;
int mi = nums[n - 1];
for (int i = n - 2; i >= 0; --i) {
int v = nums[i];
if (v <= mi) {
mi = v;
continue;
}
int k = (v + mi - 1) / mi;
ans += k - 1;
mi = v / k;
}
return ans;
}
}
class Solution {
public:
long long minimumReplacement(vector<int>& nums) {
long long ans = 0;
int n = nums.size();
int mi = nums[n - 1];
for (int i = n - 2; ~i; --i) {
int v = nums[i];
if (v <= mi) {
mi = v;
continue;
}
int k = (v + mi - 1) / mi;
ans += k - 1;
mi = v / k;
}
return ans;
}
};
func minimumReplacement(nums []int) int64 {
var ans int64
n := len(nums)
mi := nums[n-1]
for i := n - 2; i >= 0; i-- {
v := nums[i]
if v <= mi {
mi = v
continue
}
k := (v + mi - 1) / mi
ans += int64(k - 1)
mi = v / k
}
return ans
}