You are given an integer array nums
and an integer k
.
Split the array into some number of non-empty subarrays. The cost of a split is the sum of the importance value of each subarray in the split.
Let trimmed(subarray)
be the version of the subarray where all numbers which appear only once are removed.
- For example,
trimmed([3,1,2,4,3,4]) = [3,4,3,4].
The importance value of a subarray is k + trimmed(subarray).length
.
- For example, if a subarray is
[1,2,3,3,3,4,4]
, then trimmed([1,2,3,3,3,4,4]) = [3,3,3,4,4].
The importance value of this subarray will bek + 5
.
Return the minimum possible cost of a split of nums
.
A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: nums = [1,2,1,2,1,3,3], k = 2 Output: 8 Explanation: We split nums to have two subarrays: [1,2], [1,2,1,3,3]. The importance value of [1,2] is 2 + (0) = 2. The importance value of [1,2,1,3,3] is 2 + (2 + 2) = 6. The cost of the split is 2 + 6 = 8. It can be shown that this is the minimum possible cost among all the possible splits.
Example 2:
Input: nums = [1,2,1,2,1], k = 2 Output: 6 Explanation: We split nums to have two subarrays: [1,2], [1,2,1]. The importance value of [1,2] is 2 + (0) = 2. The importance value of [1,2,1] is 2 + (2) = 4. The cost of the split is 2 + 4 = 6. It can be shown that this is the minimum possible cost among all the possible splits.
Example 3:
Input: nums = [1,2,1,2,1], k = 5 Output: 10 Explanation: We split nums to have one subarray: [1,2,1,2,1]. The importance value of [1,2,1,2,1] is 5 + (3 + 2) = 10. The cost of the split is 10. It can be shown that this is the minimum possible cost among all the possible splits.
Constraints:
1 <= nums.length <= 1000
0 <= nums[i] < nums.length
1 <= k <= 109
<style type="text/css">.spoilerbutton {display:block; border:dashed; padding: 0px 0px; margin:10px 0px; font-size:150%; font-weight: bold; color:#000000; background-color:cyan; outline:0; } .spoiler {overflow:hidden;} .spoiler > div {-webkit-transition: all 0s ease;-moz-transition: margin 0s ease;-o-transition: all 0s ease;transition: margin 0s ease;} .spoilerbutton[value="Show Message"] + .spoiler > div {margin-top:-500%;} .spoilerbutton[value="Hide Message"] + .spoiler {padding:5px;} </style>
class Solution:
def minCost(self, nums: List[int], k: int) -> int:
@cache
def dfs(i):
if i >= n:
return 0
cnt = Counter()
one = 0
ans = inf
for j in range(i, n):
cnt[nums[j]] += 1
if cnt[nums[j]] == 1:
one += 1
elif cnt[nums[j]] == 2:
one -= 1
ans = min(ans, k + j - i + 1 - one + dfs(j + 1))
return ans
n = len(nums)
return dfs(0)
class Solution {
private Integer[] f;
private int[] nums;
private int n, k;
public int minCost(int[] nums, int k) {
n = nums.length;
this.k = k;
this.nums = nums;
f = new Integer[n];
return dfs(0);
}
private int dfs(int i) {
if (i >= n) {
return 0;
}
if (f[i] != null) {
return f[i];
}
int[] cnt = new int[n];
int one = 0;
int ans = 1 << 30;
for (int j = i; j < n; ++j) {
int x = ++cnt[nums[j]];
if (x == 1) {
++one;
} else if (x == 2) {
--one;
}
ans = Math.min(ans, k + j - i + 1 - one + dfs(j + 1));
}
return f[i] = ans;
}
}
class Solution {
public:
int minCost(vector<int>& nums, int k) {
int n = nums.size();
int f[n];
memset(f, 0, sizeof f);
function<int(int)> dfs = [&](int i) {
if (i >= n) {
return 0;
}
if (f[i]) {
return f[i];
}
int cnt[n];
memset(cnt, 0, sizeof cnt);
int one = 0;
int ans = 1 << 30;
for (int j = i; j < n; ++j) {
int x = ++cnt[nums[j]];
if (x == 1) {
++one;
} else if (x == 2) {
--one;
}
ans = min(ans, k + j - i + 1 - one + dfs(j + 1));
}
return f[i] = ans;
};
return dfs(0);
}
};
func minCost(nums []int, k int) int {
n := len(nums)
f := make([]int, n)
var dfs func(int) int
dfs = func(i int) int {
if i >= n {
return 0
}
if f[i] > 0 {
return f[i]
}
ans, one := 1<<30, 0
cnt := make([]int, n)
for j := i; j < n; j++ {
cnt[nums[j]]++
x := cnt[nums[j]]
if x == 1 {
one++
} else if x == 2 {
one--
}
ans = min(ans, k+j-i+1-one+dfs(j+1))
}
f[i] = ans
return ans
}
return dfs(0)
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
function minCost(nums: number[], k: number): number {
const n = nums.length;
const f = new Array(n).fill(0);
const dfs = (i: number) => {
if (i >= n) {
return 0;
}
if (f[i]) {
return f[i];
}
const cnt = new Array(n).fill(0);
let one = 0;
let ans = 1 << 30;
for (let j = i; j < n; ++j) {
const x = ++cnt[nums[j]];
if (x == 1) {
++one;
} else if (x == 2) {
--one;
}
ans = Math.min(ans, k + j - i + 1 - one + dfs(j + 1));
}
f[i] = ans;
return f[i];
};
return dfs(0);
}