forked from udacity/CarND-Advanced-Lane-Lines
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline.py
340 lines (276 loc) · 14 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import numpy as np
import cv2
import glob
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
# %matplotlib inline
def get_chessboard_corners(pathname, chessboard_size=(9, 6)):
"""For a given path, seek through calibration images and return images detected
successfully, along with their object points and image points.
"""
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((chessboard_size[1]*chessboard_size[0],3), np.float32)
objp[:,:2] = np.mgrid[0:chessboard_size[0], 0:chessboard_size[1]].T.reshape(-1,2)
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d points in real world space
imgpoints = [] # 2d points in image plane.
paths = [] # Path of the successfully processed calibration image
# Make a list of calibration images
images = glob.glob(pathname)
# Step through the list and search for chessboard corners
for fname in images:
img = cv2.imread(fname)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# Find the chessboard corners
ret, corners = cv2.findChessboardCorners(gray, chessboard_size, None)
# If found, add object points, image points
if ret == True:
objpoints.append(objp)
imgpoints.append(corners)
paths.append(fname)
return paths, objpoints, imgpoints
def calibrate_camera(img, objpoints, imgpoints):
"""Calibrate a camera using the given object and image points.
Return the camera matrix and distortion coefficients.
"""
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img.shape[0:2], None, None)
return mtx, dist
def undistort_image(img, mtx, dist):
"""Return an undistorted version of the image, given the camera matrix and distortion coefficients."""
undist = cv2.undistort(img, mtx, dist, None, mtx)
return undist
# Functions from the lessons:
def abs_sobel_thresh(img, orient='x', sobel_kernel=3, thresh=(0, 255)):
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
if orient == 'x':
abs_sobel = np.absolute(cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel))
if orient == 'y':
abs_sobel = np.absolute(cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel))
scaled_sobel = np.uint8(255 * abs_sobel / np.max(abs_sobel))
binary_output = np.zeros_like(scaled_sobel)
binary_output[(scaled_sobel >= thresh[0]) & (scaled_sobel <= thresh[1])] = 1
return binary_output
def mag_thresh(img, sobel_kernel=3, thresh=(0, 255)):
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
gradmag = np.sqrt(sobelx ** 2 + sobely ** 2)
scale_factor = np.max(gradmag) / 255
gradmag = (gradmag / scale_factor).astype(np.uint8)
binary_output = np.zeros_like(gradmag)
binary_output[(gradmag >= thresh[0]) & (gradmag <= thresh[1])] = 1
return binary_output
def dir_threshold(image, sobel_kernel=3, thresh=(0, np.pi / 2)):
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
absgraddir = np.arctan2(np.absolute(sobely), np.absolute(sobelx))
binary_output = np.zeros_like(absgraddir)
binary_output[(absgraddir >= thresh[0]) & (absgraddir <= thresh[1])] = 1
return binary_output
def rgb_binary_threshold_r(img, thresh=(200, 255)):
"""Returns a binary threshold image of the R channel in RGB color space."""
R = img[:, :, 0]
binary = np.zeros_like(R)
binary[(R > thresh[0]) & (R <= thresh[1])] = 1
return binary
def hls_binary_threshold_s(img, thresh=(90, 255)):
"""Returns a binary threshold image of the S channel in HLS color space."""
hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
S = hls[:, :, 2]
binary = np.zeros_like(S)
binary[(S > thresh[0]) & (S <= thresh[1])] = 1
return binary
def combined_threshold(img, region=((None, None), (None, None)), args=None):
"""Find and return a binary image based on the combination of thresholds.
Uses an optional region of interest polygon.
"""
comb_img = np.copy(img)
sx_binary = abs_sobel_thresh(comb_img, thresh=(20, 100))
s_binary = hls_binary_threshold_s(comb_img, thresh=(170, 255))
# Combine the two binary thresholds
combined_binary = np.zeros_like(sx_binary)
combined_binary[(s_binary == 1) | (sx_binary == 1)] = 1
return combined_binary
def warper(img, src=None, dst=None, inverse=False):
"""Warps the image according to source and destination points."""
img_size = (img.shape[1], img.shape[0])
if src is None:
src = np.float32(
[[(img_size[0] / 2) - 60, img_size[1] / 2 + 100],
[((img_size[0] / 6) - 10), img_size[1]],
[(img_size[0] * 5 / 6) + 60, img_size[1]],
[(img_size[0] / 2 + 70), img_size[1] / 2 + 100]])
if dst is None:
dst = np.float32(
[[(img_size[0] / 4), 0],
[(img_size[0] / 4), img_size[1]],
[(img_size[0] * 3 / 4), img_size[1]],
[(img_size[0] * 3 / 4), 0]])
# Given src and dst points, calculate the perspective transform matrix
if not inverse:
M = cv2.getPerspectiveTransform(src, dst)
else: # This is actually the calculation of the inverse matrix, Minv.
M = cv2.getPerspectiveTransform(dst, src)
warped = cv2.warpPerspective(img, M, img_size)
# Return the resulting image and matrix
return warped, M
def get_lanes_window(img):
"""Retrieve lane lines based on a sliding-window-based search."""
# Create an output image to draw on and visualize the result
out_img = np.dstack((img, img, img)) * 255
# Get histogram of lower half of the image:
histogram = np.sum(img[img.shape[0] / 2:, :], axis=0)
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0] / 2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
# Choose the number of sliding windows
nwindows = 9
# Set height of windows
window_height = np.int(img.shape[0] / nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = img.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated for each window
leftx_current = leftx_base
rightx_current = rightx_base
# Set the width of the windows +/- margin
margin = 100
# Set minimum number of pixels found to recenter window
minpix = 50
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
# Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = img.shape[0] - (window + 1) * window_height
win_y_high = img.shape[0] - window * window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
# Draw the windows on the visualization image
cv2.rectangle(out_img, (win_xleft_low, win_y_low), (win_xleft_high, win_y_high), (0, 255, 0), 2)
cv2.rectangle(out_img, (win_xright_low, win_y_low), (win_xright_high, win_y_high), (0, 255, 0), 2)
# Identify the nonzero pixels in x and y within the window
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (
nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (
nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
# Concatenate the arrays of indices
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
return (leftx, lefty), (rightx, righty), out_img
def get_lanes_predicted(img, left_fit, right_fit):
"""Retrieve lane lines based on existing best guess by get_lanes_window."""
# Create an output image to draw on and visualize the result
out_img = np.dstack((img, img, img)) * 255
nonzero = img.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
margin = 100
left_lane_inds = ((nonzerox > (left_fit[0] * (nonzeroy ** 2) + left_fit[1] * nonzeroy + left_fit[2] - margin)) & (
nonzerox < (left_fit[0] * (nonzeroy ** 2) + left_fit[1] * nonzeroy + left_fit[2] + margin)))
right_lane_inds = ((nonzerox > (right_fit[0] * (nonzeroy ** 2) + right_fit[1] * nonzeroy + right_fit[2] - margin)) & (
nonzerox < (right_fit[0] * (nonzeroy ** 2) + right_fit[1] * nonzeroy + right_fit[2] + margin)))
# Again, extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
return (leftx, lefty), (rightx, righty), out_img
def fit_polynomial(leftpoints, rightpoints):
"""Fit a second order polynomial to each array of lane points."""
left_fit = np.polyfit(leftpoints[1], leftpoints[0], 2)
right_fit = np.polyfit(rightpoints[1], rightpoints[0], 2)
return left_fit, right_fit
def display_lanes_window(src_img, left_points, right_points, left_fit, right_fit, out_img):
# y_max = img.shape[0]
# Generate x and y values for plotting
fity = np.linspace(0, src_img.shape[0] - 1, src_img.shape[0])
fit_leftx = left_fit[0] * fity ** 2 + left_fit[1] * fity + left_fit[2]
fit_rightx = right_fit[0] * fity ** 2 + right_fit[1] * fity + right_fit[2]
out_img[left_points[1], left_points[0]] = [255, 0, 0]
out_img[right_points[1], right_points[0]] = [0, 0, 255]
plt.imshow(out_img)
plt.plot(fit_leftx, fity, color='yellow')
plt.plot(fit_rightx, fity, color='yellow')
plt.xlim(0, 1280)
plt.ylim(720, 0)
plt.show()
def display_lanes_predicted(src_img, left_points, right_points, left_fit, right_fit, out_img):
# Generate x and y values for plotting
fity = np.linspace(0, src_img.shape[0] - 1, src_img.shape[0])
fit_leftx = left_fit[0]*fity**2 + left_fit[1]*fity + left_fit[2]
fit_rightx = right_fit[0]*fity**2 + right_fit[1]*fity + right_fit[2]
# Create an image to show the selection window:
window_img = np.zeros_like(out_img)
# Color in left and right line pixels
out_img[left_points[1], left_points[0]] = [255, 0, 0]
out_img[right_points[1], right_points[0]] = [0, 0, 255]
margin = 100
# Generate a polygon to illustrate the search window area
# And recast the x and y points into usable format for cv2.fillPoly()
left_line_window1 = np.array([np.transpose(np.vstack([fit_leftx-margin, fity]))])
left_line_window2 = np.array([np.flipud(np.transpose(np.vstack([fit_leftx+margin, fity])))])
left_line_pts = np.hstack((left_line_window1, left_line_window2))
right_line_window1 = np.array([np.transpose(np.vstack([fit_rightx-margin, fity]))])
right_line_window2 = np.array([np.flipud(np.transpose(np.vstack([fit_rightx+margin, fity])))])
right_line_pts = np.hstack((right_line_window1, right_line_window2))
# Draw the lane onto the warped blank image
cv2.fillPoly(window_img, np.int_([left_line_pts]), (0,255, 0))
cv2.fillPoly(window_img, np.int_([right_line_pts]), (0,255, 0))
result = cv2.addWeighted(out_img, 1, window_img, 0.3, 0)
plt.imshow(result)
plt.plot(fit_leftx, fity, color='yellow')
plt.plot(fit_rightx, fity, color='yellow')
plt.xlim(0, 1280)
plt.ylim(720, 0)
plt.show()
def pipeline(img=None, mtx=None, dist=None, left_fit=None, right_fit=None):
# Using a curved lane image to build the first part of the pipeline:
if img is None:
img_path = './test_images/test5.jpg'
img = mpimg.imread(img_path)
undistort = undistort_image(img, mtx, dist)
thresholded_img = combined_threshold(undistort)
pers_transf_img, _ = warper(thresholded_img)
# if this is the first prediction or lines are not good enough, search
# via windows:
# question: what indicates a bad prediction? Parallelism between lane lines?
if left_fit is None or right_fit is None:
left_points, right_points, out_img = get_lanes_window(pers_transf_img)
# otherwise, search via previously predicted:
else:
left_points, right_points, out_img = get_lanes_predicted(pers_transf_img, left_fit, right_fit)
# Fit a polynomial to both point arrays:
left_fit, right_fit = fit_polynomial(left_points, right_points)
display_lanes_window(pers_transf_img.shape[0], left_points, right_points, left_fit, right_fit, out_img)
if __name__ == '__main__':
cal_img_path = './camera_cal/calibration*.jpg'
print('Retrieving chessboard corners for images in \'{}\''.format(cal_img_path))
image_paths, objpoints, imgpoints = get_chessboard_corners(cal_img_path)
print('Calibration images processed.')
# Read in an image from the calibration set:
img = cv2.imread('./camera_cal/calibration2.jpg')
# Get camera matrix and distortion coefficients with the test image:
mtx, dist = calibrate_camera(img, objpoints, imgpoints)
# Now run the pipeline on a test image:
pipeline(mtx=mtx, dist=dist)