-
Notifications
You must be signed in to change notification settings - Fork 6
/
haimer_camera.py
executable file
·621 lines (469 loc) · 22.7 KB
/
haimer_camera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
#!/usr/bin/env python
# Copyright 2019 Kent A. Vander Velden <[email protected]>
#
# If you use this software, please consider contacting me. I'd like to hear
# about your work.
#
# This file is part of Haimer-Probe.
#
# Haimer-Probe is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Haimer-Probe is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Haimer-Probe. If not, see <https://www.gnu.org/licenses/>.
# Ideas and observations:
# 1) The long black pointer passes over the top of the short red pointer.
# 2) The blue dot created by the LED on the camera changes the hue of the pointer tha
# passes under it and then some amount of the pointer is lost.
# 3) Identify unchanging areas of the image, while the pointer is moving, to
# know what features can be subtracted. E.g., the dial face.
# 4) For each pixel generate a probability of color to detect change.
# 5) Normalize the image using the uniform dial face.
# 6) Edge detection of the wedge shape arrows before Hough transform is not as
# convenient as skipping edge detection, in which case Hough transform is
# a thinning operation is more representative of the midline of the pointer.
# 7) There must be no glare on the dial face. Glare is directly reflected light
# and easily saturates the camera sensor and obscures all details. If the
# glare obscures the pointer hands, no measurements are possible. Auto
# exposure helps as the light intensity changes, but will help with glare
# and may be hindered by glare.
from __future__ import print_function
import os
import sys
import cv2
import math
import numpy as np
import camera
import common
from common import next_frame
c_camera_name = 'HaimerCamera'
c_demo_mode = False
c_haimer_ball_diam = 4. # millimeters
c_dial_outer_mask_r = 220
c_red_angle_start = 1.9170124625343092
c_red_angle_end = c_red_angle_start + 2.5120631002707458 # = -1.8894180264975993 + 2 * math.pi - c_red_angle_start
c_initial_image_rot = -.07513945576152618354
c_rho_resolution = 1 / 2. # 1/2 pixel
c_theta_resolution = np.pi / 180 / 4. # 1/4 degree
c_black_outer_mask_r = 130
c_black_outer_mask_e = (120, 130)
c_inner_mask_r = 20
c_red_outer_mask_r = 88
c_black_hough_threshold = 5
c_black_hough_min_line_length = 42 # needs to be larger than the height of the HAIMER label
c_black_hough_max_line_gap = 5
c_black_drawn_line_length = 200
c_red_hough_threshold = 5
c_red_hough_min_line_length = 10
c_red_hough_max_line_gap = 2
c_red_drawn_line_length = 140
c_final_image_scale_factor = .7
c_label_font = cv2.FONT_HERSHEY_SIMPLEX
c_label_color = (255, 255, 255)
c_label_s = .8
c_line_color = (0, 200, 0)
c_line_s = 2
c_center_offset = [18, -6]
c_image_center = lambda w, h: (w // 2 + c_center_offset[0], h // 2 + c_center_offset[1])
def mean_angles(lst):
# Because the list of angles can contain both 0 and 2pi,
# however, 0 and pi are also contained and will average to pi/2,
# this is thus probably not the best way to do this.
# https://en.wikipedia.org/wiki/Mean_of_circular_quantities
return math.atan2(np.mean(np.sin(lst)), np.mean(np.cos(lst)))
def difference_of_angles(theta1, theta2):
dt = theta1 - theta2
return math.atan2(math.sin(dt), math.cos(dt))
def line_angle(pt1, pt2):
delta_x = pt2[0] - pt1[0]
delta_y = pt2[1] - pt1[1]
return math.atan2(delta_y, delta_x) + math.pi / 2.
# Surprisingly, there is no skeletonization method in OpenCV. It seems common
# that people implement topological skeleton, i.e., thinning using mathematical
# morphology operators. This method may leave many small branches to be pruned.
# Scikit-image, in the morphology module, has skeletonize and medial_axis,
# these are both slower than the hand-coded OpenCV method, especially medial_axis.
# https://en.wikipedia.org/wiki/Topological_skeleton
# https://en.wikipedia.org/wiki/Morphological_skeleton
# https://en.wikipedia.org/wiki/Pruning_(morphology)
# https://scikit-image.org/docs/dev/auto_examples/edges/plot_skeleton.html
# https://stackoverflow.com/questions/25968200/morphology-skeleton-differences-betwen-scikit-image-pymorph-opencv-python
# The following code is from
# https://stackoverflow.com/questions/42845747/optimized-skeleton-function-for-opencv-with-python
def find_skeleton(img):
skeleton = np.zeros(img.shape, np.uint8)
eroded = np.zeros(img.shape, np.uint8)
temp = np.zeros(img.shape, np.uint8)
_, thresh = cv2.threshold(img, 127, 255, 0)
kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3))
iters = 0
while True:
cv2.erode(thresh, kernel, eroded)
cv2.dilate(eroded, kernel, temp)
cv2.subtract(thresh, temp, temp)
cv2.bitwise_or(skeleton, temp, skeleton)
thresh, eroded = eroded, thresh # Swap instead of copy
iters += 1
if cv2.countNonZero(thresh) == 0:
return skeleton, iters
def filter_lines(lines, image_center, cutoff=5):
lines2 = []
for lst in lines:
x1, y1, x2, y2 = lst[0]
x0, y0 = image_center
# Distance between a point (image center) and a line defined by two
# points, as returned from HoughLinesP
# https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
d = abs((y2 - y1) * x0 - (x2 - x1) * y0 + x2 * y1 - y2 * x1) / math.sqrt((y2 - y1) ** 2 + (x2 - x1) ** 2)
lines2 += [[d < cutoff, lst]]
# Further filter lines by comparing lines against the longest, discarding
# lines that are at too great of an angle relative to the longest line.
if True:
lines3 = []
# Find the length of the longest line.
md = None
m_lst = None
for lst in lines2:
inc, (x1, y1, x2, y2) = lst[0], lst[1][0]
if inc:
delta_x = x1 - x2
delta_y = y1 - y2
d = math.sqrt(delta_x ** 2 + delta_y ** 2)
if md is None or md < d:
md = d
m_lst = lst
# Filter lines based on angle to longest line.
if md is not None:
_, (x1, y1, x2, y2) = m_lst[0], m_lst[1][0]
a0 = line_angle((x1, y1), (x2, y2))
for lst in lines2:
inc, (x1, y1, x2, y2) = lst[0], lst[1][0]
if inc:
a1 = line_angle((x1, y1), (x2, y2))
mt = difference_of_angles(a0, a1)
inc = inc and abs(mt) < math.pi / 8.
lines3 += [[inc, lst[1]]]
lines2 = lines3
return lines2
def plot_lines(lines, theta, drawn_line_len, image, image_center):
if lines is not None:
for i in range(len(lines)):
inc, (x1, y1, x2, y2) = lines[i][0], lines[i][1][0]
pt1 = (x1, y1)
pt2 = (x2, y2)
pt0 = image_center
cv2.line(image, pt0, pt1, (255, 0, 0), 1, cv2.LINE_AA)
cv2.line(image, pt0, pt2, (255, 0, 0), 1, cv2.LINE_AA)
cv2.line(image, pt1, pt2, (0, 0, 255) if inc else (255, 0, 0), 3, cv2.LINE_AA)
if theta is not None:
a = math.cos(theta)
b = math.sin(theta)
x0, y0 = image_center
pt2 = (round(x0 - drawn_line_len * -b), round(y0 - drawn_line_len * a))
pt2 = (int(pt2[0]), int(pt2[1]))
cv2.line(image, image_center, pt2, c_line_color, c_line_s, cv2.LINE_AA)
def summarize_lines(lines, image_center):
aa = []
for lst in lines:
inc, (x1, y1, x2, y2) = lst[0], lst[1][0]
if inc:
pt0 = image_center
pt1 = (x1, y1)
pt2 = (x2, y2)
aa += [line_angle(pt0, pt1), line_angle(pt0, pt2)]
theta = None
if aa:
theta = mean_angles(aa)
return theta
def gen_black_arrow_mask(image, image_center):
mask = np.zeros(image.shape, dtype=image.dtype)
# cv2.circle(mask, image_center, c_black_outer_mask_r, (255, 255, 255), -1)
cv2.ellipse(mask, image_center, c_black_outer_mask_e, 0, 0, 360, (255, 255, 255), -1)
cv2.circle(mask, image_center, c_inner_mask_r, (0, 0, 0), -1)
return mask
def gen_red_arrow_mask(image, image_center):
mask = np.zeros(image.shape, dtype=image.dtype)
cv2.circle(mask, image_center, c_red_outer_mask_r, (255, 255, 255), -1)
cv2.circle(mask, image_center, c_inner_mask_r, (0, 0, 0), -1)
return mask
def black_arrow_segment(image, image_center):
mask = gen_black_arrow_mask(image, image_center)
image = cv2.bitwise_and(image, mask)
if False:
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV_FULL)
sat = hsv[:, :, 1] < 80
val = hsv[:, :, 2] < 180
seg = sat * val * mask[:, :, 0]
else:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
_, red_arrow_mask = red_arrow_segment(image, image_center)
m = cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3))
red_arrow_mask = cv2.morphologyEx(red_arrow_mask, cv2.MORPH_OPEN, m, iterations=1)
red_arrow_mask = cv2.morphologyEx(red_arrow_mask, cv2.MORPH_DILATE, m, iterations=2)
# rv, thres = cv2.threshold(gray, 200, 255, cv2.THRESH_BINARY_INV)
# rv, thres = cv2.threshold(gray, 0, 255, cv2.THRESH_OTSU + cv2.THRESH_BINARY_INV)
# rv, thres = cv2.threshold(gray, 0, 255, cv2.THRESH_TRIANGLE + cv2.THRESH_BINARY_INV)
# print('threshold_value', rv)
# thres = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 7, 5)
thres = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 13, 5)
thres = thres * 255
thres = np.clip(thres.astype(np.int16) - red_arrow_mask, 0, 255).astype(np.uint8)
seg = thres * mask[:, :, 0]
return image, seg
def red_arrow_segment(image, image_center):
mask = gen_red_arrow_mask(image, image_center)
image = cv2.bitwise_and(image, mask)
if True:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thres = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 13, 5)
thres = thres * 255
thres = cv2.bitwise_and(image, image, mask=thres)
hsv = cv2.cvtColor(thres, cv2.COLOR_BGR2HSV_FULL)
else:
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV_FULL)
red = (hsv[:, :, 0] < 20) + (hsv[:, :, 0] > 255 - 20)
sat = hsv[:, :, 1] > 80
seg = red * sat * mask[:, :, 0]
return image, seg
def arrow_common(image, image_center, seg_func, hough_threshold, hough_min_line_length, hough_max_line_gap, ll):
image, seg0 = seg_func(image, image_center)
m = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
seg = cv2.morphologyEx(seg0, cv2.MORPH_OPEN, m, iterations=1)
skel, it = find_skeleton(seg)
# Edge detection (such as cv2.Canny) returns the edges of the wedge shaped
# pointer, and the edges point to neither the dial value nor to the center
# of the dial. So, skip edge detection, and immediately call skeletonization,
# which is similar to the medial axis of the pointer and immediately useful.
# Use cv2.HoughLinesP, which compared to cv2.HoughLines, may be faster and has
# options for minimal line length.
lines = cv2.HoughLinesP(skel, c_rho_resolution, c_theta_resolution, hough_threshold,
minLineLength=hough_min_line_length, maxLineGap=hough_max_line_gap)
theta = None
if lines is not None:
lines = filter_lines(lines, image_center, c_inner_mask_r // 4)
theta = summarize_lines(lines, image_center)
plot_lines(lines, theta, ll, image, image_center)
return theta, image, seg0, skel
def black_arrow(image, image_center):
return arrow_common(image, image_center, black_arrow_segment, c_black_hough_threshold, c_black_hough_min_line_length, c_black_hough_max_line_gap, c_black_drawn_line_length)
def red_arrow(image, image_center):
return arrow_common(image, image_center, red_arrow_segment, c_red_hough_threshold, c_red_hough_min_line_length, c_red_hough_max_line_gap, c_red_drawn_line_length)
@common.static_vars(tare_lst=[], tare_on=False)
def calc_mm(theta_b, theta_r):
# Blend the course and find measurements of the red and black hands,
# respectively and return final measurement.
if calc_mm.tare_on:
common.append_v(calc_mm.tare_lst, (theta_b, theta_r), 200)
print('Tare', len(calc_mm.tare_lst), mean_angles([x[0] for x in calc_mm.tare_lst]), mean_angles([x[1] for x in calc_mm.tare_lst]))
# Thetas come in as [0, Pi] and [-Pi, 0] so change that to [0, 2Pi]
if theta_b < 0.:
theta_b += math.pi * 2
if theta_r < 0.:
theta_r += math.pi * 2
theta_b = max(0., min(math.pi * 2, theta_b))
theta_r = max(0., min(math.pi * 2, theta_r))
# Change thetas to millimeters
mm_b = theta_b / (math.pi * 2) * 1.
mm_r = (theta_r - c_red_angle_start) / (c_red_angle_end - c_red_angle_start) * c_haimer_ball_diam # - c_haimer_ball_diam / 2
# The decimal portion of mm_r, to be updated.
mm_r_d = math.modf(mm_r)[0]
# Find minimal distance between the black hand, which measure 0-1, and the
# decimal part of the red hand, which measures [-2, 2], by treating them
# as angles between [0, 2Pi].
theta_d = difference_of_angles(theta_b, mm_r_d * math.pi * 2)
mm_offset = theta_d / (2 * math.pi)
# Adding the offset to mm_r updates the course red hand measurement with the
# finer measurement of the black hand. The two estimates of the [0-1] part,
# the decimal portion of mm_r and mm_b, could be weighted, but here only
# mm_b is used. Effectively, after the offset is applied, mm_r counts the
# number of times the black hand has revolved and mm_b measures the fraction
# of rotation of the black hand.
mm_blended = mm_r + mm_offset
# Offset the semifinal measurement by half the probe ball diameter.
mm_final = mm_blended - c_haimer_ball_diam / 2.
# print(f'{mm_r:8.4f} {mm_b:8.4f} {mm_offset:8.4f} {mm_blended:8.4f} {mm_final:8.4f}')
return mm_final, mm_b, mm_r
def draw_labels(image, image_b, image_r, theta_b, theta_r, mm_b, mm_r, mm_final):
# cv2.putText(image_b, f'{theta_b:5.2f} rad {mm_b:6.3f} mm', (20, 30 * 1), c_label_font, c_label_s, c_label_color)
# cv2.putText(image_r, f'{theta_r:5.2f} rad {mm_r:6.3f} mm', (20, 30 * 1), c_label_font, c_label_s, c_label_color)
# cv2.putText(image, f'{mm_final:6.3f} mm', (20, 30 * 1), c_label_font, c_label_s, c_label_color)
cv2.putText(image_b, '{:5.2f} rad {:6.3f} mm'.format(theta_b, mm_b), (20, 30 * 1), c_label_font, c_label_s, c_label_color)
cv2.putText(image_r, '{:5.2f} rad {:6.3f} mm'.format(theta_r, mm_r), (20, 30 * 1), c_label_font, c_label_s, c_label_color)
cv2.putText(image, '{:6.3f} mm'.format(mm_final), (20, 30 * 1), c_label_font, c_label_s, c_label_color)
def next_frame2(video_capture):
if c_demo_mode:
fn = 'tests/haimer_camera/640x480/h-2.png'
# fn_pat = 'tests/haimer_camera/640x480/mov_raw_{:06d}.ppm'
image0 = next_frame(video_capture, fn=fn)
else:
image0 = next_frame(video_capture)
return image0
@common.static_vars(theta_b_l=[], theta_r_l=[], pause_updates=False, save=False, record=False, record_ind=0, debug_view=False, standalone=False)
def get_measurement(video_capture):
mm_final, mm_b, mm_r = None, None, None
if not get_measurement.standalone:
get_measurement.record = False
get_measurement.save = False
build_all = get_measurement.record or get_measurement.save or get_measurement.debug_view
image0 = next_frame2(video_capture)
h, w = image0.shape[:2]
image_center = c_image_center(w, h)
m = cv2.getRotationMatrix2D(image_center, c_initial_image_rot / math.pi * 180., 1.0)
image1 = cv2.warpAffine(image0, m, (w, h))
image2 = image1.copy()
theta_b, image_b, seg_b, skel_b = black_arrow(image1, image_center)
seg_b = cv2.cvtColor(seg_b, cv2.COLOR_GRAY2BGR)
skel_b = cv2.cvtColor(skel_b, cv2.COLOR_GRAY2BGR)
theta_r, image_r, seg_r, skel_r = red_arrow(image1, image_center)
seg_r = cv2.cvtColor(seg_r, cv2.COLOR_GRAY2BGR)
skel_r = cv2.cvtColor(skel_r, cv2.COLOR_GRAY2BGR)
# Maintain a list of valid thetas for times when no measurements are
# available, such as when the black hand passes over the red hand, and
# to use for noise reduction.
common.append_v(get_measurement.theta_b_l, theta_b)
common.append_v(get_measurement.theta_r_l, theta_r)
if get_measurement.theta_b_l and get_measurement.theta_r_l:
theta_b = mean_angles(get_measurement.theta_b_l)
theta_r = mean_angles(get_measurement.theta_r_l)
mm_final, mm_b, mm_r = calc_mm(theta_b, theta_r)
if build_all:
# Draw outer circle dial and crosshairs on dial pivot.
cv2.circle(image1, image_center, c_dial_outer_mask_r, c_line_color, c_line_s)
cv2.line(image1,
(image_center[0] - c_inner_mask_r, image_center[1] - c_inner_mask_r),
(image_center[0] + c_inner_mask_r, image_center[1] + c_inner_mask_r),
c_line_color, 1)
cv2.line(image1,
(image_center[0] - c_inner_mask_r, image_center[1] + c_inner_mask_r),
(image_center[0] + c_inner_mask_r, image_center[1] - c_inner_mask_r),
c_line_color, 1)
# Draw black arrow mask
cv2.circle(image1, image_center, c_black_outer_mask_r, c_line_color, c_line_s)
cv2.ellipse(image1, image_center, c_black_outer_mask_e, 0, 0, 360, c_line_color, c_line_s)
cv2.circle(image1, image_center, c_inner_mask_r, c_line_color, c_line_s)
# Draw red arrow mask
cv2.circle(image1, image_center, c_red_outer_mask_r, c_line_color, c_line_s)
cv2.circle(image1, image_center, c_inner_mask_r, c_line_color, c_line_s)
# Draw final marked up image
mask = np.zeros(image2.shape, dtype=image2.dtype)
cv2.circle(mask, image_center, c_dial_outer_mask_r, (255, 255, 255), -1)
image2 = cv2.bitwise_and(image2, mask)
# Draw calculated red and black arrows
if get_measurement.theta_b_l and get_measurement.theta_r_l:
plot_lines(None, theta_b, c_black_drawn_line_length, image2, image_center)
plot_lines(None, theta_r, c_red_drawn_line_length, image2, image_center)
draw_labels(image2, image_b, image_r, theta_b, theta_r, mm_b, mm_r, mm_final)
img_all, img_all_resized = None, None
if build_all:
# Build and display composite image
img_all0 = np.vstack([image0, image1, image2])
img_all1 = np.vstack([seg_b, skel_b, image_b])
img_all2 = np.vstack([seg_r, skel_r, image_r])
img_all = np.hstack([img_all0, img_all1, img_all2])
img_b = cv2.resize(image_b, None, fx=0.5, fy=0.5)
img_r = cv2.resize(image_r, (image2.shape[1] - img_b.shape[1], image2.shape[0] - img_b.shape[0]))
img_simple = np.vstack([image2, np.hstack([img_b, img_r])])
if get_measurement.standalone:
common.draw_fps(img_simple)
if build_all:
common.draw_fps(img_all, append_t=False)
if build_all:
img_all_resized = cv2.resize(img_all, None, fx=c_final_image_scale_factor, fy=c_final_image_scale_factor)
if get_measurement.debug_view:
final_img = img_all_resized
else:
final_img = img_simple
if get_measurement.standalone:
common.draw_error(final_img)
if get_measurement.record:
fn1 = 'mov_raw_h_{:06}.ppm'.format(get_measurement.record_ind)
cv2.imwrite(fn1, image0)
fn2 = 'mov_all_h_{:06}.ppm'.format(get_measurement.record_ind)
cv2.imwrite(fn2, img_all)
fn3 = 'mov_fin_h_{:06}.ppm'.format(get_measurement.record_ind)
cv2.imwrite(fn3, image2)
fn4 = 'mov_sim_h_{:06}.ppm'.format(get_measurement.record_ind)
cv2.imwrite(fn4, img_simple)
get_measurement.record_ind += 1
print('Recorded {} {} {} {}'.format(fn1, fn2, fn3, fn4))
if get_measurement.save:
get_measurement.save = False
for i in range(100):
# fn1 = f'raw_h_{i:03}.png'
fn1 = 'raw_h_{:03}.png'.format(i)
if not os.path.exists(fn1):
cv2.imwrite(fn1, image0)
# fn2 = f'all_h_{i:03}.png'
fn2 = 'all_h_{:03}.png'.format(i)
cv2.imwrite(fn2, img_all)
fn3 = 'sim_h_{:03}.png'.format(i)
cv2.imwrite(fn3, img_simple)
# print(f'Wrote images {fn1} and {fn2}')
print('Wrote images {} {} {}'.format(fn1, fn2, fn3))
break
return mm_final, final_img
def process_key(key):
if key == ord('p'):
get_measurement.pause_updates = not get_measurement.pause_updates
elif key == ord('r'):
get_measurement.record = not get_measurement.record
elif key == ord('s'):
get_measurement.save = True
elif key == ord('d'):
get_measurement.debug_view = not get_measurement.debug_view
elif key == ord('z'):
if calc_mm.tare_on:
calc_mm.tare_lst = []
calc_mm.tare_on = False
else:
calc_mm.tare_lst = []
calc_mm.tare_on = True
elif 81 <= key <= 84:
if key == 81: # KEY_LEFT
c_center_offset[0] -= 1
elif key == 82: # KEY_UP
c_center_offset[1] -= 1
elif key == 83: # KEY_RIGHT
c_center_offset[0] += 1
elif key == 84: # KEY_DOWN
c_center_offset[1] += 1
print('c_center_offset:', c_center_offset)
elif key in [27, ord('q')]: # Escape or q
raise common.QuitException
elif key >= 0:
# print(key)
return False
return True
def gauge_vision_setup():
if c_demo_mode:
return None
video_capture = cv2.VideoCapture(1)
if not video_capture.isOpened():
print('camera is not open')
sys.exit(1)
camera.set_camera_properties(video_capture, '640x480')
# camera.list_camera_properties(video_capture)
return video_capture
def main():
np.set_printoptions(precision=2)
video_capture = gauge_vision_setup()
get_measurement.standalone = True
while True:
try:
mm_final, final_img = get_measurement(video_capture)
if not get_measurement.pause_updates:
cv2.imshow(c_camera_name, final_img)
key = cv2.waitKey(5) & 0xff
process_key(key)
# print('mm_final:', mm_final)
except common.QuitException:
break
if __name__ == "__main__":
main()