-
Notifications
You must be signed in to change notification settings - Fork 332
/
Copy pathvectorized_random_brightness.py
239 lines (193 loc) · 7.9 KB
/
vectorized_random_brightness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# Copyright 2023 The KerasCV Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow import keras
from keras_cv.layers import RandomBrightness
from keras_cv.layers.preprocessing.base_image_augmentation_layer import (
BaseImageAugmentationLayer,
)
from keras_cv.utils import preprocessing as preprocessing_utils
class OldRandomBrightness(BaseImageAugmentationLayer):
"""A preprocessing layer which randomly adjusts brightness during training.
This layer will randomly increase/reduce the brightness for the input RGB
images.
At inference time, the output will be identical to the input.
Call the layer with `training=True` to adjust the brightness of the input.
Note that different brightness adjustment factors
will be apply to each the images in the batch.
Args:
factor: Float or a list/tuple of 2 floats between -1.0 and 1.0. The
factor is used to determine the lower bound and upper bound of the
brightness adjustment. A float value will be chosen randomly between
the limits. When -1.0 is chosen, the output image will be black, and
when 1.0 is chosen, the image will be fully white. When only one float
is provided, eg, 0.2, then -0.2 will be used for lower bound and 0.2
will be used for upper bound.
value_range: Optional list/tuple of 2 floats for the lower and upper limit
of the values of the input data, defaults to [0.0, 255.0]. Can be
changed to e.g. [0.0, 1.0] if the image input has been scaled before
this layer. The brightness adjustment will be scaled to this range, and
the output values will be clipped to this range.
seed: optional integer, for fixed RNG behavior.
Inputs: 3D (HWC) or 4D (NHWC) tensor, with float or int dtype. Input pixel
values can be of any range (e.g. `[0., 1.)` or `[0, 255]`)
Output: 3D (HWC) or 4D (NHWC) tensor with brightness adjusted based on the
`factor`. By default, the layer will output floats. The output value will
be clipped to the range `[0, 255]`, the valid range of RGB colors, and
rescaled based on the `value_range` if needed.
```
"""
def __init__(self, factor, value_range=(0, 255), seed=None, **kwargs):
super().__init__(seed=seed, **kwargs)
if isinstance(factor, float) or isinstance(factor, int):
factor = (-factor, factor)
self.factor = preprocessing_utils.parse_factor(
factor, min_value=-1, max_value=1
)
self.value_range = value_range
self.seed = seed
def augment_image(self, image, transformation, **kwargs):
return self._brightness_adjust(image, transformation)
def augment_label(self, label, transformation, **kwargs):
return label
def augment_segmentation_mask(
self, segmentation_mask, transformation, **kwargs
):
return segmentation_mask
def augment_bounding_boxes(
self, bounding_boxes, transformation=None, **kwargs
):
return bounding_boxes
def get_random_transformation(self, **kwargs):
rgb_delta_shape = (1, 1, 1)
random_rgb_delta = self.factor(shape=rgb_delta_shape)
random_rgb_delta = random_rgb_delta * (
self.value_range[1] - self.value_range[0]
)
return random_rgb_delta
def _brightness_adjust(self, image, rgb_delta):
rank = image.shape.rank
if rank != 3:
raise ValueError(
"Expected the input image to be rank 3. Got "
f"inputs.shape = {image.shape}"
)
rgb_delta = tf.cast(rgb_delta, image.dtype)
image += rgb_delta
return tf.clip_by_value(image, self.value_range[0], self.value_range[1])
def get_config(self):
config = {
"factor": self.factor,
"value_range": self.value_range,
"seed": self.seed,
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
class RandomBrightnessTest(tf.test.TestCase):
def test_consistency_with_old_impl_rescaled_range(self):
image_shape = (16, 32, 32, 3)
fixed_factor = (0.8, 0.8)
image = tf.random.uniform(shape=image_shape)
layer = RandomBrightness(factor=fixed_factor)
old_layer = OldRandomBrightness(factor=fixed_factor)
output = layer(image)
old_output = old_layer(image)
self.assertAllClose(old_output, output)
def test_consistency_with_old_impl_rgb_range(self):
image_shape = (16, 32, 32, 3)
fixed_factor = (0.8, 0.8)
image = tf.random.uniform(shape=image_shape) * 255.0
layer = RandomBrightness(factor=fixed_factor)
old_layer = OldRandomBrightness(factor=fixed_factor)
output = layer(image)
old_output = old_layer(image)
self.assertAllClose(old_output, output)
if __name__ == "__main__":
# Run benchmark
(x_train, _), _ = keras.datasets.cifar10.load_data()
x_train = x_train.astype(np.float32)
num_images = [1000, 2000, 5000, 10000]
results = {}
aug_candidates = [RandomBrightness, OldRandomBrightness]
aug_args = {"factor": (0.5)}
for aug in aug_candidates:
# Eager Mode
c = aug.__name__
layer = aug(**aug_args)
runtimes = []
print(f"Timing {c}")
for n_images in num_images:
# warmup
layer(x_train[:n_images])
t0 = time.time()
r1 = layer(x_train[:n_images])
t1 = time.time()
runtimes.append(t1 - t0)
print(f"Runtime for {c}, n_images={n_images}: {t1-t0}")
results[c] = runtimes
# Graph Mode
c = aug.__name__ + " Graph Mode"
layer = aug(**aug_args)
@tf.function()
def apply_aug(inputs):
return layer(inputs)
runtimes = []
print(f"Timing {c}")
for n_images in num_images:
# warmup
apply_aug(x_train[:n_images])
t0 = time.time()
r1 = apply_aug(x_train[:n_images])
t1 = time.time()
runtimes.append(t1 - t0)
print(f"Runtime for {c}, n_images={n_images}: {t1-t0}")
results[c] = runtimes
# XLA Mode
c = aug.__name__ + " XLA Mode"
layer = aug(**aug_args)
@tf.function(jit_compile=True)
def apply_aug(inputs):
return layer(inputs)
runtimes = []
print(f"Timing {c}")
for n_images in num_images:
# warmup
apply_aug(x_train[:n_images])
t0 = time.time()
r1 = apply_aug(x_train[:n_images])
t1 = time.time()
runtimes.append(t1 - t0)
print(f"Runtime for {c}, n_images={n_images}: {t1-t0}")
results[c] = runtimes
plt.figure()
for key in results:
plt.plot(num_images, results[key], label=key)
plt.xlabel("Number images")
plt.ylabel("Runtime (seconds)")
plt.legend()
plt.savefig("comparison.png")
# So we can actually see more relevant margins
del results[aug_candidates[1].__name__]
plt.figure()
for key in results:
plt.plot(num_images, results[key], label=key)
plt.xlabel("Number images")
plt.ylabel("Runtime (seconds)")
plt.legend()
plt.savefig("comparison_no_old_eager.png")
# Run unit tests
tf.test.main()