-
Notifications
You must be signed in to change notification settings - Fork 333
/
Copy pathvectorized_random_crop.py
359 lines (314 loc) · 11.9 KB
/
vectorized_random_crop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
# Copyright 2023 The KerasCV Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import unittest
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow import keras
from keras_cv import bounding_box
from keras_cv.layers import RandomCrop
from keras_cv.layers.preprocessing.base_image_augmentation_layer import (
BaseImageAugmentationLayer,
)
H_AXIS = -3
W_AXIS = -2
class OldRandomCrop(BaseImageAugmentationLayer):
"""A preprocessing layer which randomly crops images during training.
During training, this layer will randomly choose a location to crop images
down to a target size. The layer will crop all the images in the same batch
to the same cropping location.
At inference time, and during training if an input image is smaller than the
target size, the input will be resized and cropped so as to return the
largest possible window in the image that matches the target aspect ratio.
If you need to apply random cropping at inference time, set `training` to
True when calling the layer.
Input pixel values can be of any range (e.g. `[0., 1.)` or `[0, 255]`) and
of integer or floating point dtype. By default, the layer will output
floats.
Input shape:
3D (unbatched) or 4D (batched) tensor with shape:
`(..., height, width, channels)`, in `"channels_last"` format.
Output shape:
3D (unbatched) or 4D (batched) tensor with shape:
`(..., target_height, target_width, channels)`.
Args:
height: Integer, the height of the output shape.
width: Integer, the width of the output shape.
seed: Integer. Used to create a random seed.
"""
def __init__(
self, height, width, seed=None, bounding_box_format=None, **kwargs
):
super().__init__(
**kwargs,
autocast=False,
seed=seed,
)
self.height = height
self.width = width
self.seed = seed
self.auto_vectorize = False
self.bounding_box_format = bounding_box_format
def get_random_transformation(self, image=None, **kwargs):
image_shape = tf.shape(image)
h_diff = image_shape[H_AXIS] - self.height
w_diff = image_shape[W_AXIS] - self.width
dtype = image_shape.dtype
rands = self._random_generator.uniform([2], 0, dtype.max, dtype)
h_start = rands[0] % (h_diff + 1)
w_start = rands[1] % (w_diff + 1)
return {"top": h_start, "left": w_start}
def augment_image(self, image, transformation, **kwargs):
image_shape = tf.shape(image)
h_diff = image_shape[H_AXIS] - self.height
w_diff = image_shape[W_AXIS] - self.width
return tf.cond(
tf.reduce_all((h_diff >= 0, w_diff >= 0)),
lambda: self._crop(image, transformation),
lambda: self._resize(image),
)
def compute_image_signature(self, images):
return tf.TensorSpec(
shape=(self.height, self.width, images.shape[-1]),
dtype=self.compute_dtype,
)
def augment_bounding_boxes(
self, bounding_boxes, transformation, image=None, **kwargs
):
if self.bounding_box_format is None:
raise ValueError(
"`RandomCrop()` was called with bounding boxes,"
"but no `bounding_box_format` was specified in the constructor."
"Please specify a bounding box format in the constructor. i.e."
"`RandomCrop(bounding_box_format='xyxy')`"
)
bounding_boxes = bounding_box.convert_format(
bounding_boxes,
source=self.bounding_box_format,
target="xyxy",
images=image,
)
image_shape = tf.shape(image)
h_diff = image_shape[H_AXIS] - self.height
w_diff = image_shape[W_AXIS] - self.width
bounding_boxes = tf.cond(
tf.reduce_all((h_diff >= 0, w_diff >= 0)),
lambda: self._crop_bounding_boxes(
image, bounding_boxes, transformation
),
lambda: self._resize_bounding_boxes(
image,
bounding_boxes,
),
)
bounding_boxes = bounding_box.clip_to_image(
bounding_boxes,
bounding_box_format="xyxy",
image_shape=(self.height, self.width, image_shape[-1]),
)
bounding_boxes = bounding_box.convert_format(
bounding_boxes,
source="xyxy",
target=self.bounding_box_format,
dtype=self.compute_dtype,
images=image,
)
return bounding_boxes
def _crop(self, image, transformation):
top = transformation["top"]
left = transformation["left"]
return tf.image.crop_to_bounding_box(
image, top, left, self.height, self.width
)
def _resize(self, image):
resizing_layer = keras.layers.Resizing(self.height, self.width)
outputs = resizing_layer(image)
# smart_resize will always output float32, so we need to re-cast.
return tf.cast(outputs, self.compute_dtype)
def augment_label(self, label, transformation, **kwargs):
return label
def get_config(self):
config = {
"height": self.height,
"width": self.width,
"seed": self.seed,
"bounding_box_format": self.bounding_box_format,
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
def _crop_bounding_boxes(self, image, bounding_boxes, transformation):
top = tf.cast(transformation["top"], dtype=self.compute_dtype)
left = tf.cast(transformation["left"], dtype=self.compute_dtype)
output = bounding_boxes.copy()
x1, y1, x2, y2 = tf.split(
bounding_boxes["boxes"], [1, 1, 1, 1], axis=-1
)
output["boxes"] = tf.concat(
[
x1 - left,
y1 - top,
x2 - left,
y2 - top,
],
axis=-1,
)
return output
def _resize_bounding_boxes(self, image, bounding_boxes):
output = bounding_boxes.copy()
image_shape = tf.shape(image)
x_scale = tf.cast(
self.width / image_shape[W_AXIS], dtype=self.compute_dtype
)
y_scale = tf.cast(
self.height / image_shape[H_AXIS], dtype=self.compute_dtype
)
x1, y1, x2, y2 = tf.split(
bounding_boxes["boxes"], [1, 1, 1, 1], axis=-1
)
output["boxes"] = tf.concat(
[
x1 * x_scale,
y1 * y_scale,
x2 * x_scale,
y2 * y_scale,
],
axis=-1,
)
return output
class RandomCropTest(tf.test.TestCase):
def test_consistency_with_old_impl_crop(self):
ori_height, ori_width = 256, 256
height, width = 128, 128
input_image = np.random.random((ori_height, ori_width, 3)).astype(
np.float32
)
bboxes = {
"boxes": tf.convert_to_tensor([[100, 100, 200, 200]]),
"classes": tf.convert_to_tensor([1]),
}
input = {"images": input_image, "bounding_boxes": bboxes}
layer = RandomCrop(
height=height, width=width, bounding_box_format="xyxy"
)
old_layer = OldRandomCrop(
height=height, width=width, bounding_box_format="xyxy"
)
# manually set height_offset and width_offset
height_offset = 20
width_offset = 30
transformations = {
"tops": tf.ones((1, 1)) * (height_offset / (ori_height - height)),
"lefts": tf.ones((1, 1)) * (width_offset / (ori_width - width)),
}
old_transformation = {
"top": tf.convert_to_tensor(height_offset, dtype=tf.int32),
"left": tf.convert_to_tensor(width_offset, dtype=tf.int32),
}
with unittest.mock.patch.object(
layer,
"get_random_transformation_batch",
return_value=transformations,
):
output = layer(input, training=True)
with unittest.mock.patch.object(
old_layer,
"get_random_transformation",
return_value=old_transformation,
):
old_output = old_layer(input, training=True)
self.assertAllClose(
output["bounding_boxes"]["boxes"],
old_output["bounding_boxes"]["boxes"].to_tensor(-1),
)
self.assertAllClose(output["images"], old_output["images"])
def test_consistency_with_old_impl_resize(self):
input_image = np.random.random((256, 256, 3)).astype(np.float32)
bboxes = {
"boxes": tf.convert_to_tensor([[100, 100, 200, 200]]),
"classes": tf.convert_to_tensor([1]),
}
input = {"images": input_image, "bounding_boxes": bboxes}
layer = RandomCrop(height=512, width=512, bounding_box_format="xyxy")
old_layer = OldRandomCrop(
height=512, width=512, bounding_box_format="xyxy"
)
output = layer(input, training=True)
old_output = old_layer(input, training=True)
self.assertAllClose(
output["bounding_boxes"]["boxes"],
old_output["bounding_boxes"]["boxes"].to_tensor(-1),
)
self.assertAllClose(output["images"], old_output["images"])
if __name__ == "__main__":
# Run benchmark
(x_train, _), _ = keras.datasets.cifar10.load_data()
x_train = x_train.astype(np.float32)
num_images = [100, 200, 500, 1000]
num_classes = 10
results = {}
aug_candidates = [RandomCrop, OldRandomCrop]
aug_args = {"height": 16, "width": 16}
for aug in aug_candidates:
# Eager Mode
c = aug.__name__
layer = aug(**aug_args)
runtimes = []
print(f"Timing {c}")
for n_images in num_images:
# warmup
layer(x_train[:n_images])
t0 = time.time()
r1 = layer(x_train[:n_images])
t1 = time.time()
runtimes.append(t1 - t0)
print(f"Runtime for {c}, n_images={n_images}: {t1-t0}")
results[c] = runtimes
# Graph Mode
c = aug.__name__ + " Graph Mode"
layer = aug(**aug_args)
@tf.function()
def apply_aug(inputs):
return layer(inputs)
runtimes = []
print(f"Timing {c}")
for n_images in num_images:
# warmup
apply_aug(x_train[:n_images])
t0 = time.time()
r1 = apply_aug(x_train[:n_images])
t1 = time.time()
runtimes.append(t1 - t0)
print(f"Runtime for {c}, n_images={n_images}: {t1-t0}")
results[c] = runtimes
# XLA Mode
# cannot run tf.image.crop_and_resize on XLA
plt.figure()
for key in results:
plt.plot(num_images, results[key], label=key)
plt.xlabel("Number images")
plt.ylabel("Runtime (seconds)")
plt.legend()
plt.savefig("comparison.png")
# So we can actually see more relevant margins
del results[aug_candidates[1].__name__]
plt.figure()
for key in results:
plt.plot(num_images, results[key], label=key)
plt.xlabel("Number images")
plt.ylabel("Runtime (seconds)")
plt.legend()
plt.savefig("comparison_no_old_eager.png")
# Run unit tests
tf.test.main()