-
Notifications
You must be signed in to change notification settings - Fork 823
/
tf_graph_util.py
473 lines (416 loc) · 19.1 KB
/
tf_graph_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
# This file is adapted from https://github.com/tensorflow/tensorflow/blob/master
# /tensorflow/python/framework/graph_util_impl.py
#
# Copyright 2015 The TensorFlow Authors, 2019 Analytics Zoo Authors.
# All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Helpers to manipulate a tensor graph in python.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import re
import six
from tensorflow.core.framework import attr_value_pb2
from tensorflow.core.framework import graph_pb2
from tensorflow.core.framework import node_def_pb2
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_util
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util import deprecation
from tensorflow.python.util.tf_export import tf_export
_VARIABLE_OPS = {
"Assign",
"AssignAdd",
"AssignSub",
"Queue",
"ScatterAdd",
"ScatterSub",
"ScatterUpdate",
"TruncatedNormal",
"Variable",
"VariableV2",
}
def _is_variable_op(op):
"""Returns true if 'op' refers to a Variable node."""
return op in _VARIABLE_OPS
@deprecation.deprecated(
date=None,
instructions="Use `tf.compat.v1.graph_util.must_run_on_cpu`")
@tf_export(v1=["graph_util.must_run_on_cpu"])
def must_run_on_cpu(node, pin_variables_on_cpu=False):
"""Returns True if the given node_def must run on CPU, otherwise False.
Args:
node: The node to be assigned to a device. Could be either an ops.Operation
or NodeDef.
pin_variables_on_cpu: If True, this function will return False if node_def
represents a variable-related op.
Returns:
True if the given node must run on CPU, otherwise False.
"""
if isinstance(node, ops.Operation):
node_def = node.node_def
else:
assert isinstance(node, node_def_pb2.NodeDef)
node_def = node
# If the op is a variable-related op, should we pin it on CPU?
if pin_variables_on_cpu and _is_variable_op(node_def.op):
return True
# Constant operations producing a string or int32 must run on CPU.
if node_def.op == "Const":
# Get the value of the 'dtype' attr
dtype = node_def.attr["dtype"].type
if dtype == dtypes.string or dtype == dtypes.int32:
return True
if node_def.op in ["DynamicStitch", "ParallelDynamicStitch"]:
dtype = node_def.attr["T"].type
if dtype == dtypes.int32:
# DynamicStitch on GPU only works for int32 values.
return True
if node_def.op in ["Cast"]:
dtype = node_def.attr["SrcT"].type
if dtype == dtypes.int32:
# Cast on GPU does not works for int32 values.
return True
return False
################################################################################
#
# device functions for use in with g.device(...)
#
################################################################################
def _node_name(n):
if n.startswith("^"):
return n[1:]
else:
return n.split(":")[0]
def _extract_graph_summary(graph_def):
"""Extracts useful information from the graph and returns them."""
name_to_input_name = {} # Keyed by the dest node name.
name_to_node = {} # Keyed by node name.
# Keeps track of node sequences. It is important to still output the
# operations in the original order.
name_to_seq_num = {} # Keyed by node name.
seq = 0
for node in graph_def.node:
n = _node_name(node.name)
name_to_node[n] = node
name_to_input_name[n] = [_node_name(x) for x in node.input]
if "_class" in node.attr:
# Prevent colocated nodes being lost
for v in node.attr["_class"].list.s:
v_str = v.decode("utf-8")
if v_str.startswith("loc:@"):
colocated_node = v_str[5:]
name_to_input_name[n].append(colocated_node)
name_to_seq_num[n] = seq
seq += 1
return name_to_input_name, name_to_node, name_to_seq_num
def _assert_nodes_are_present(name_to_node, nodes):
"""Assert that nodes are present in the graph."""
for d in nodes:
assert d in name_to_node, "%s is not in graph" % d
def _bfs_for_reachable_nodes(target_nodes, name_to_input_name):
"""Breadth first search for reachable nodes from target nodes."""
nodes_to_keep = set()
# Breadth first search to find all the nodes that we should keep.
next_to_visit = target_nodes[:]
while next_to_visit:
node = next_to_visit[0]
del next_to_visit[0]
if node in nodes_to_keep:
# Already visited this node.
continue
nodes_to_keep.add(node)
if node in name_to_input_name:
next_to_visit += name_to_input_name[node]
return nodes_to_keep
@deprecation.deprecated(
date=None,
instructions="Use `tf.compat.v1.graph_util.extract_sub_graph`")
@tf_export(v1=["graph_util.extract_sub_graph"])
def extract_sub_graph(graph_def, dest_nodes):
"""Extract the subgraph that can reach any of the nodes in 'dest_nodes'.
Args:
graph_def: A graph_pb2.GraphDef proto.
dest_nodes: A list of strings specifying the destination node names.
Returns:
The GraphDef of the sub-graph.
Raises:
TypeError: If 'graph_def' is not a graph_pb2.GraphDef proto.
"""
if not isinstance(graph_def, graph_pb2.GraphDef):
raise TypeError("graph_def must be a graph_pb2.GraphDef proto.")
if isinstance(dest_nodes, six.string_types):
raise TypeError("dest_nodes must be a list.")
name_to_input_name, name_to_node, name_to_seq_num = _extract_graph_summary(
graph_def)
_assert_nodes_are_present(name_to_node, dest_nodes)
nodes_to_keep = _bfs_for_reachable_nodes(dest_nodes, name_to_input_name)
nodes_to_keep_list = sorted(
list(nodes_to_keep), key=lambda n: name_to_seq_num[n])
# Now construct the output GraphDef
out = graph_pb2.GraphDef()
for n in nodes_to_keep_list:
out.node.extend([copy.deepcopy(name_to_node[n])])
out.library.CopyFrom(graph_def.library)
out.versions.CopyFrom(graph_def.versions)
return out
@deprecation.deprecated(
date=None,
instructions="Use `tf.compat.v1.graph_util.tensor_shape_from_node_def_name`"
)
@tf_export(v1=["graph_util.tensor_shape_from_node_def_name"])
def tensor_shape_from_node_def_name(graph, input_name):
"""Convenience function to get a shape from a NodeDef's input string."""
# To get a tensor, the name must be in the form <input>:<port>, for example
# 'Mul:0'. The GraphDef input strings don't always have the port specified
# though, so if there isn't a colon we need to add a default ':0' to the end.
if ":" not in input_name:
canonical_name = input_name + ":0"
else:
canonical_name = input_name
tensor = graph.get_tensor_by_name(canonical_name)
shape = tensor.get_shape()
return shape
@deprecation.deprecated(
date=None,
instructions="Use `tf.compat.v1.graph_util.convert_variables_to_constants`")
@tf_export(v1=["graph_util.convert_variables_to_constants"])
def convert_variables_to_constants(sess,
input_graph_def,
output_node_names,
variable_names_whitelist=None,
variable_names_blacklist=None):
"""Replaces all the variables in a graph with constants of the same values.
If you have a trained graph containing Variable ops, it can be convenient to
convert them all to Const ops holding the same values. This makes it possible
to describe the network fully with a single GraphDef file, and allows the
removal of a lot of ops related to loading and saving the variables.
Args:
sess: Active TensorFlow session containing the variables.
input_graph_def: GraphDef object holding the network.
output_node_names: List of name strings for the result nodes of the graph.
variable_names_whitelist: The set of variable names to convert (by default,
all variables are converted).
variable_names_blacklist: The set of variable names to omit converting
to constants.
Returns:
GraphDef containing a simplified version of the original.
"""
def trace_back_find_variable(origin_name, name_to_nodes):
nodes_in_path = set()
control_ops = ["Enter", "Exit", "NextIteration", "Switch"]
current_name = origin_name
while name_to_nodes[current_name].op != "VarHandleOp":
nodes_in_path.add(current_name)
current_node = name_to_nodes[current_name]
op_name = current_node.op
if op_name in control_ops or op_name == "Identity":
curr_input_name = _node_name(current_node.input[0])
else:
raise ValueError("Op type %s should not be in the path " +
"between ReadVariableOp and VarHandleOp" % current_node.op)
current_name = curr_input_name
return current_name, nodes_in_path
def create_const_op(node_name, dtype, data, data_shape=None):
"""Creates a Const op."""
output_node = node_def_pb2.NodeDef()
output_node.op = "Const"
output_node.name = node_name
output_node.attr["dtype"].CopyFrom(dtype)
output_node.attr["value"].CopyFrom(
attr_value_pb2.AttrValue(
tensor=tensor_util.make_tensor_proto(
data, dtype=dtype.type, shape=data_shape)))
return output_node
# This graph only includes the nodes needed to evaluate the output nodes, and
# removes unneeded nodes like those involved in saving and assignment.
inference_graph = extract_sub_graph(input_graph_def, output_node_names)
# Identify the ops in the graph.
map_name_to_node = {
node.name: node for node in inference_graph.node
}
# Get list of variables.
variable_names = []
variable_dict_names = []
resource_identity_types = {}
read_variable_op_types = {}
for node in inference_graph.node:
if node.op in ["Variable", "VariableV2", "VarHandleOp"]:
variable_name = node.name
if ((variable_names_whitelist is not None
and variable_name not in variable_names_whitelist)
or (variable_names_blacklist is not None
and variable_name in variable_names_blacklist)):
continue
variable_dict_names.append(variable_name)
if node.op == "VarHandleOp":
variable_names.append(variable_name + "/Read/ReadVariableOp:0")
else:
variable_names.append(variable_name + ":0")
elif node.op in ["ReadVariableOp", "ResourceGather", "VariableShape"]:
# There can be one or more Identity or control flow ops in between the ReadVariableOp
# and VarHandleOp. Store them with the associated dtypes.
source_op_name, nodes_in_path = trace_back_find_variable(_node_name(node.input[0]),
map_name_to_node)
dtype = map_name_to_node[source_op_name].attr["dtype"]
for node_name in nodes_in_path:
resource_identity_types[node_name] = dtype
read_variable_op_types[node.name] = dtype
# Gets map of variables and the associated data.
if variable_names:
returned_variables = sess.run(variable_names)
else:
returned_variables = []
variables_data_map = dict(zip(variable_dict_names, returned_variables))
logging.info("Froze %d variables.", len(returned_variables))
# Reconstruct the graph with constants in place of variables.
output_graph_def = graph_pb2.GraphDef()
how_many_converted = 0
for input_node in inference_graph.node:
output_node = node_def_pb2.NodeDef()
if input_node.name in variables_data_map:
data = variables_data_map[input_node.name]
output_node = create_const_op(input_node.name, input_node.attr["dtype"],
data, data.shape)
how_many_converted += 1
elif input_node.name in resource_identity_types:
# Converts the Identities of type RESOURCE_DT to the appropriate type
# based on the input they are referencing.
output_node.CopyFrom(input_node)
output_node.attr["T"].CopyFrom(resource_identity_types[input_node.name])
elif input_node.op == "ReadVariableOp":
# The first branch converts all VarHandleOps of ResourceVariables to
# constants, so we need to convert the associated ReadVariableOps to
# Identity ops.
output_node.op = "Identity"
output_node.name = input_node.name
output_node.input.extend([input_node.input[0]])
output_node.attr["T"].CopyFrom(input_node.attr["dtype"])
if "_class" in input_node.attr:
output_node.attr["_class"].CopyFrom(input_node.attr["_class"])
elif input_node.op == "ResourceGather":
# The first branch converts all VarHandleOps of ResourceGather to
# constants, so we need to convert the associated ResourceGather to Gather
# ops with a Const axis feeding into it.
if input_node.attr["batch_dims"].i != 0:
raise ValueError("batch_dims != 0 is not supported by freeze_graph.")
axis_data = input_node.attr["batch_dims"].i
axis_node_name = input_node.name + "/axis"
axis_dtype = input_node.attr["Tindices"]
output_axis_node = create_const_op(axis_node_name, axis_dtype, axis_data)
output_graph_def.node.extend([output_axis_node])
output_node.op = "GatherV2"
output_node.name = input_node.name
output_node.input.extend(
[input_node.input[0], input_node.input[1], axis_node_name])
output_node.attr["Tparams"].CopyFrom(input_node.attr["dtype"])
output_node.attr["Tindices"].CopyFrom(input_node.attr["Tindices"])
output_node.attr["Taxis"].CopyFrom(axis_dtype)
if "_class" in input_node.attr:
output_node.attr["_class"].CopyFrom(input_node.attr["_class"])
elif input_node.op == "VariableShape":
output_node.op = "Shape"
output_node.name = input_node.name
output_node.input.extend([input_node.input[0]])
output_node.attr["T"].CopyFrom(read_variable_op_types[input_node.name])
output_node.attr["out_type"].CopyFrom(input_node.attr["out_type"])
else:
output_node.CopyFrom(input_node)
output_graph_def.node.extend([output_node])
output_graph_def.library.CopyFrom(inference_graph.library)
logging.info("Converted %d variables to const ops.", how_many_converted)
return output_graph_def
@deprecation.deprecated(
date=None,
instructions="Use `tf.compat.v1.graph_util.remove_training_nodes`")
@tf_export(v1=["graph_util.remove_training_nodes"])
def remove_training_nodes(input_graph, protected_nodes=None):
"""Prunes out nodes that aren't needed for inference.
There are nodes like Identity and CheckNumerics that are only useful
during training, and can be removed in graphs that will be used for
nothing but inference. Here we identify and remove them, returning an
equivalent graph. To be specific, CheckNumerics nodes are always removed, and
Identity nodes that aren't involved in control edges are spliced out so that
their input and outputs are directly connected.
Args:
input_graph: Model to analyze and prune.
protected_nodes: An optional list of names of nodes to be kept
unconditionally. This is for example useful to preserve Identity output
nodes.
Returns:
A list of nodes with the unnecessary ones removed.
"""
if not protected_nodes:
protected_nodes = []
types_to_remove = {"CheckNumerics": True}
input_nodes = input_graph.node
names_to_remove = {}
for node in input_nodes:
if node.op in types_to_remove and node.name not in protected_nodes:
names_to_remove[node.name] = True
nodes_after_removal = []
for node in input_nodes:
if node.name in names_to_remove:
continue
new_node = node_def_pb2.NodeDef()
new_node.CopyFrom(node)
input_before_removal = node.input
del new_node.input[:]
for full_input_name in input_before_removal:
input_name = re.sub(r"^\^", "", full_input_name)
if input_name in names_to_remove:
continue
new_node.input.append(full_input_name)
nodes_after_removal.append(new_node)
types_to_splice = {"Identity": True}
control_input_names = set()
node_names_with_control_input = set()
for node in nodes_after_removal:
for node_input in node.input:
if "^" in node_input:
control_input_names.add(node_input.replace("^", ""))
node_names_with_control_input.add(node.name)
names_to_splice = {}
for node in nodes_after_removal:
if node.op in types_to_splice and node.name not in protected_nodes:
# We don't want to remove nodes that have control edge inputs, because
# they might be involved in subtle dependency issues that removing them
# will jeopardize.
if node.name not in node_names_with_control_input:
names_to_splice[node.name] = node.input[0]
# We also don't want to remove nodes which are used as control edge inputs.
names_to_splice = {name: value for name, value in names_to_splice.items()
if name not in control_input_names}
nodes_after_splicing = []
for node in nodes_after_removal:
if node.name in names_to_splice:
continue
new_node = node_def_pb2.NodeDef()
new_node.CopyFrom(node)
input_before_removal = node.input
del new_node.input[:]
for full_input_name in input_before_removal:
input_name = re.sub(r"^\^", "", full_input_name)
while input_name in names_to_splice:
full_input_name = names_to_splice[input_name]
input_name = re.sub(r"^\^", "", full_input_name)
new_node.input.append(full_input_name)
nodes_after_splicing.append(new_node)
output_graph = graph_pb2.GraphDef()
output_graph.node.extend(nodes_after_splicing)
return output_graph