diff --git a/backtesting/_plotting.py b/backtesting/_plotting.py index fc3a88b1..bb062cc5 100644 --- a/backtesting/_plotting.py +++ b/backtesting/_plotting.py @@ -162,6 +162,7 @@ def f(s, new_index=pd.Index(df.index.view(int)), bars=trades[column]): def plot(*, results: pd.Series, + symbols: List[str], df: pd.DataFrame, indicators: List[_Indicator], filename='', plot_width=None, diff --git a/backtesting/_stats.py b/backtesting/_stats.py index 8435605c..e155a7f9 100644 --- a/backtesting/_stats.py +++ b/backtesting/_stats.py @@ -35,6 +35,7 @@ def geometric_mean(returns: pd.Series) -> float: def compute_stats( trades: Union[List['Trade'], pd.DataFrame], equity: np.ndarray, + symbols: List[str], ohlc_data: pd.DataFrame, strategy_instance: 'Strategy', risk_free_rate: float = 0, @@ -92,8 +93,14 @@ def _round_timedelta(value, _period=_data_period(index)): s.loc['Equity Final [$]'] = equity[-1] s.loc['Equity Peak [$]'] = equity.max() s.loc['Return [%]'] = (equity[-1] - equity[0]) / equity[0] * 100 - c = ohlc_data.Close.values - s.loc['Buy & Hold Return [%]'] = (c[-1] - c[0]) / c[0] * 100 # long-only return + + r = [] + for symbol in symbols: + c = ohlc_data[f"{symbol}_Close"].values + _r = (c[-1] - c[0]) / c[0] * 100 + s.loc[f'Buy & Hold Return for {symbol} [%]'] = _r # long-only return + r.append(_r) + s.loc['Avg Buy & Hold Return [%]'] = np.mean(r) gmean_day_return: float = 0 day_returns = np.array(np.nan) diff --git a/backtesting/backtesting.py b/backtesting/backtesting.py index 742a40f2..2a911ca0 100644 --- a/backtesting/backtesting.py +++ b/backtesting/backtesting.py @@ -49,6 +49,7 @@ class Strategy(metaclass=ABCMeta): `backtesting.backtesting.Strategy.next` to define your own strategy. """ + def __init__(self, broker, data, params): self._indicators = [] self._broker: _Broker = broker @@ -139,18 +140,20 @@ def init(): if is_arraylike and np.argmax(value.shape) == 0: value = value.T - if not is_arraylike or not 1 <= value.ndim <= 2 or value.shape[-1] != len(self._data.Close): + if not is_arraylike or not 1 <= value.ndim <= 2 or value.shape[-1] != len(self._data.index): raise ValueError( 'Indicators must return (optionally a tuple of) numpy.arrays of same ' f'length as `data` (data shape: {self._data.Close.shape}; indicator "{name}"' f'shape: {getattr(value, "shape" , "")}, returned value: {value})') + ''' if plot and overlay is None and np.issubdtype(value.dtype, np.number): x = value / self._data.Close # By default, overlay if strong majority of indicator values # is within 30% of Close with np.errstate(invalid='ignore'): - overlay = ((x < 1.4) & (x > .6)).mean() > .6 + overlay = ((x < 1.4) &.data (x > .6)).mean() > .6 + ''' value = _Indicator(value, name=name, plot=plot, overlay=overlay, color=color, scatter=scatter, @@ -195,6 +198,7 @@ def __repr__(self): return '.9999' _FULL_EQUITY = __FULL_EQUITY(1 - sys.float_info.epsilon) def buy(self, *, + symbol: str, size: float = _FULL_EQUITY, limit: float = None, stop: float = None, @@ -207,9 +211,10 @@ def buy(self, *, """ assert 0 < size < 1 or round(size) == size, \ "size must be a positive fraction of equity, or a positive whole number of units" - return self._broker.new_order(size, limit, stop, sl, tp) + return self._broker.new_order(symbol, size, limit, stop, sl, tp) def sell(self, *, + symbol: str, size: float = _FULL_EQUITY, limit: float = None, stop: float = None, @@ -222,7 +227,7 @@ def sell(self, *, """ assert 0 < size < 1 or round(size) == size, \ "size must be a positive fraction of equity, or a positive whole number of units" - return self._broker.new_order(-size, limit, stop, sl, tp) + return self._broker.new_order(symbol, -size, limit, stop, sl, tp) @property def equity(self) -> float: @@ -259,9 +264,9 @@ def data(self) -> _Data: return self._data @property - def position(self) -> 'Position': + def positions(self) -> 'Dict[str, Position]': """Instance of `backtesting.backtesting.Position`.""" - return self._broker.position + return self._broker.positions @property def orders(self) -> 'Tuple[Order, ...]': @@ -283,6 +288,7 @@ class _Orders(tuple): """ TODO: remove this class. Only for deprecation. """ + def cancel(self): """Cancel all non-contingent (i.e. SL/TP) orders.""" for order in self: @@ -310,6 +316,7 @@ class Position: if self.position: ... # we have a position, either long or short """ + def __init__(self, broker: '_Broker'): self.__broker = broker @@ -374,7 +381,9 @@ class Order: [filled]: https://www.investopedia.com/terms/f/fill.asp [Good 'Til Canceled]: https://www.investopedia.com/terms/g/gtc.asp """ + def __init__(self, broker: '_Broker', + symbol: str, size: float, limit_price: float = None, stop_price: float = None, @@ -382,6 +391,7 @@ def __init__(self, broker: '_Broker', tp_price: float = None, parent_trade: 'Trade' = None): self.__broker = broker + self.__symbol = symbol assert size != 0 self.__size = size self.__limit_price = limit_price @@ -396,15 +406,17 @@ def _replace(self, **kwargs): return self def __repr__(self): - return ''.format(', '.join(f'{param}={round(value, 5)}' - for param, value in ( - ('size', self.__size), - ('limit', self.__limit_price), - ('stop', self.__stop_price), - ('sl', self.__sl_price), - ('tp', self.__tp_price), - ('contingent', self.is_contingent), - ) if value is not None)) + return ''.format(self.__symbol, \ + ', '.join(f'{param}={round(value, 5)}' + for param, value in ( + ('size', self.__size), + ('limit', self.__limit_price), + ('stop', self.__stop_price), + ('sl', self.__sl_price), + ('tp', self.__tp_price), + ('contingent', + self.is_contingent), + ) if value is not None)) def cancel(self): """Cancel the order.""" @@ -421,6 +433,14 @@ def cancel(self): # Fields getters + @property + def symbol(self) -> str: + """ + Order symbol (underlying asset) + """ + + return self.__symbol + @property def size(self) -> float: """ @@ -509,8 +529,10 @@ class Trade: When an `Order` is filled, it results in an active `Trade`. Find active trades in `Strategy.trades` and closed, settled trades in `Strategy.closed_trades`. """ - def __init__(self, broker: '_Broker', size: int, entry_price: float, entry_bar): + + def __init__(self, broker: '_Broker', symbol: str, size: int, entry_price: float, entry_bar): self.__broker = broker + self.__symbol = symbol self.__size = size self.__entry_price = entry_price self.__exit_price: Optional[float] = None @@ -520,7 +542,8 @@ def __init__(self, broker: '_Broker', size: int, entry_price: float, entry_bar): self.__tp_order: Optional[Order] = None def __repr__(self): - return f'' def _replace(self, **kwargs): @@ -535,11 +558,16 @@ def close(self, portion: float = 1.): """Place new `Order` to close `portion` of the trade at next market price.""" assert 0 < portion <= 1, "portion must be a fraction between 0 and 1" size = copysign(max(1, round(abs(self.__size) * portion)), -self.__size) - order = Order(self.__broker, size, parent_trade=self) + order = Order(self.__broker, self.__symbol, size, parent_trade=self) self.__broker.orders.insert(0, order) # Fields getters + @property + def symbol(self): + """Trade symbol""" + return self.__symbol + @property def size(self): """Trade size (volume; negative for short trades).""" @@ -603,19 +631,19 @@ def is_short(self): @property def pl(self): """Trade profit (positive) or loss (negative) in cash units.""" - price = self.__exit_price or self.__broker.last_price + price = self.__exit_price or self.__broker.last_price(self.__symbol) return self.__size * (price - self.__entry_price) @property def pl_pct(self): """Trade profit (positive) or loss (negative) in percent.""" - price = self.__exit_price or self.__broker.last_price + price = self.__exit_price or self.__broker.last_price(self.__symbol) return copysign(1, self.__size) * (price / self.__entry_price - 1) @property def value(self): """Trade total value in cash (volume × price).""" - price = self.__exit_price or self.__broker.last_price + price = self.__exit_price or self.__broker.last_price(self.__symbol) return abs(self.__size) * price # SL/TP management API @@ -659,18 +687,19 @@ def __set_contingent(self, type, price): order.cancel() if price: kwargs = dict(stop=price) if type == 'sl' else dict(limit=price) - order = self.__broker.new_order(-self.size, trade=self, **kwargs) + order = self.__broker.new_order(self.symbol, -self.size, trade=self, **kwargs) setattr(self, attr, order) class _Broker: - def __init__(self, *, data, cash, commission, margin, + def __init__(self, *, symbols, data, cash, commission, margin, trade_on_close, hedging, exclusive_orders, index): assert 0 < cash, f"cash should be >0, is {cash}" assert -.1 <= commission < .1, \ ("commission should be between -10% " f"(e.g. market-maker's rebates) and 10% (fees), is {commission}") assert 0 < margin <= 1, f"margin should be between 0 and 1, is {margin}" + self._symbols = symbols self._data: _Data = data self._cash = cash self._commission = commission @@ -682,13 +711,18 @@ def __init__(self, *, data, cash, commission, margin, self._equity = np.tile(np.nan, len(index)) self.orders: List[Order] = [] self.trades: List[Trade] = [] - self.position = Position(self) + self.positions = {symbol: Position(self) for symbol in symbols} self.closed_trades: List[Trade] = [] + @property + def pl(self): + return sum([position.pl for position in self.positions.values()]) + def __repr__(self): - return f'' + return f'' def new_order(self, + symbol: str, size: float, limit: float = None, stop: float = None, @@ -699,6 +733,7 @@ def new_order(self, """ Argument size indicates whether the order is long or short """ + symbol = str(symbol) size = float(size) stop = stop and float(stop) limit = limit and float(limit) @@ -706,7 +741,11 @@ def new_order(self, tp = tp and float(tp) is_long = size > 0 - adjusted_price = self._adjusted_price(size) + adjusted_price = self._adjusted_price(symbol, size) + + if symbol not in self._symbols: + raise ValueError( + f"Symbol {symbol} not exist") if is_long: if not (sl or -np.inf) < (limit or stop or adjusted_price) < (tp or np.inf): @@ -719,7 +758,7 @@ def new_order(self, "Short orders require: " f"TP ({tp}) < LIMIT ({limit or stop or adjusted_price}) < SL ({sl})") - order = Order(self, size, limit, stop, sl, tp, trade) + order = Order(self, symbol, size, limit, stop, sl, tp, trade) # Put the new order in the order queue, # inserting SL/TP/trade-closing orders in-front if trade: @@ -738,17 +777,37 @@ def new_order(self, return order - @property - def last_price(self) -> float: + # @property + def last_price(self, symbol) -> float: """ Price at the last (current) close. """ - return self._data.Close[-1] + return self._data[f"{symbol}_Close"][-1] + + # @property + def prev_close(self, symbol) -> float: + """ Price at the previous close. """ + return self._data[f"{symbol}_Close"][-2] + + # @property + def last_open(self, symbol) -> float: + """ Price at the last open. """ + return self._data[f"{symbol}_Open"][-1] + + # @property + def last_high(self, symbol) -> float: + """ Price at the last open. """ + return self._data[f"{symbol}_High"][-1] - def _adjusted_price(self, size=None, price=None) -> float: + # @property + def last_low(self, symbol) -> float: + """ Price at the last open. """ + return self._data[f"{symbol}_Low"][-1] + + def _adjusted_price(self, symbol, size=None, price=None) -> float: """ Long/short `price`, adjusted for commisions. In long positions, the adjusted price is a fraction higher, and vice versa. """ - return (price or self.last_price) * (1 + copysign(self._commission, size)) + return (price or self.last_price(symbol)) * (1 + copysign(self._commission, size)) @property def equity(self) -> float: @@ -772,19 +831,20 @@ def next(self): if equity <= 0: assert self.margin_available <= 0 for trade in self.trades: - self._close_trade(trade, self._data.Close[-1], i) + self._close_trade(trade, self.last_price(trade.symbol), i) self._cash = 0 self._equity[i:] = 0 raise _OutOfMoneyError def _process_orders(self): data = self._data - open, high, low = data.Open[-1], data.High[-1], data.Low[-1] - prev_close = data.Close[-2] reprocess_orders = False # Process orders for order in list(self.orders): # type: Order + open, high, low = self.last_open(order.symbol), self.last_high( + order.symbol), self.last_low(order.symbol) + prev_close = self.prev_close(order.symbol) # Related SL/TP order was already removed if order not in self.orders: @@ -854,7 +914,7 @@ def _process_orders(self): # Adjust price to include commission (or bid-ask spread). # In long positions, the adjusted price is a fraction higher, and vice versa. - adjusted_price = self._adjusted_price(order.size, price) + adjusted_price = self._adjusted_price(order.symbol, order.size, price) # If order size was specified proportionally, # precompute true size in units, accounting for margin and spread/commissions @@ -874,6 +934,8 @@ def _process_orders(self): # Existing trades are closed at unadjusted price, because the adjustment # was already made when buying. for trade in list(self.trades): + if trade.symbol != order.symbol: + continue if trade.is_long == order.is_long: continue assert trade.size * order.size < 0 @@ -899,7 +961,8 @@ def _process_orders(self): # Open a new trade if need_size: - self._open_trade(adjusted_price, need_size, order.sl, order.tp, time_index) + self._open_trade(order.symbol, adjusted_price, need_size, + order.sl, order.tp, time_index) # We need to reprocess the SL/TP orders newly added to the queue. # This allows e.g. SL hitting in the same bar the order was open. @@ -957,8 +1020,8 @@ def _close_trade(self, trade: Trade, price: float, time_index: int): self.closed_trades.append(trade._replace(exit_price=price, exit_bar=time_index)) self._cash += trade.pl - def _open_trade(self, price: float, size: int, sl: float, tp: float, time_index: int): - trade = Trade(self, size, price, time_index) + def _open_trade(self, symbol: str, price: float, size: int, sl: float, tp: float, time_index: int): + trade = Trade(self, symbol, size, price, time_index) self.trades.append(trade) # Create SL/TP (bracket) orders. # Make sure SL order is created first so it gets adversarially processed before TP order @@ -980,7 +1043,9 @@ class Backtest: instance, or `backtesting.backtesting.Backtest.optimize` to optimize it. """ + def __init__(self, + symbols: List[str], data: pd.DataFrame, strategy: Type[Strategy], *, @@ -1039,6 +1104,9 @@ def __init__(self, if not (isinstance(strategy, type) and issubclass(strategy, Strategy)): raise TypeError('`strategy` must be a Strategy sub-type') + if not isinstance(symbols, list) or not all([isinstance(s, str) for s in symbols]) or len(symbols) == 0: + raise TypeError( + '`symbols` must be list of string with size > 0 representing symbols in data') if not isinstance(data, pd.DataFrame): raise TypeError("`data` must be a pandas.DataFrame with columns") if not isinstance(commission, Number): @@ -1058,33 +1126,39 @@ def __init__(self, except ValueError: pass - if 'Volume' not in data: - data['Volume'] = np.nan - - if len(data) == 0: - raise ValueError('OHLC `data` is empty') - if len(data.columns.intersection({'Open', 'High', 'Low', 'Close', 'Volume'})) != 5: - raise ValueError("`data` must be a pandas.DataFrame with columns " - "'Open', 'High', 'Low', 'Close', and (optionally) 'Volume'") - if data[['Open', 'High', 'Low', 'Close']].isnull().values.any(): - raise ValueError('Some OHLC values are missing (NaN). ' - 'Please strip those lines with `df.dropna()` or ' - 'fill them in with `df.interpolate()` or whatever.') - if np.any(data['Close'] > cash): - warnings.warn('Some prices are larger than initial cash value. Note that fractional ' - 'trading is not supported. If you want to trade Bitcoin, ' - 'increase initial cash, or trade μBTC or satoshis instead (GH-134).', - stacklevel=2) - if not data.index.is_monotonic_increasing: - warnings.warn('Data index is not sorted in ascending order. Sorting.', - stacklevel=2) - data = data.sort_index() - if not isinstance(data.index, pd.DatetimeIndex): - warnings.warn('Data index is not datetime. Assuming simple periods, ' - 'but `pd.DateTimeIndex` is advised.', - stacklevel=2) + for symbol in symbols: + if f'{symbol}_Volume' not in data: + data[f'{symbol}_Volume'] = np.nan + + if len(data) == 0: + raise ValueError('OHLC `data` is empty') + base_columns = [f"{symbol}_{column}" for column in [ + 'Open', 'High', 'Low', 'Close', 'Volume']] + if len(data.columns.intersection(set(base_columns))) != 5: + raise ValueError("`data` must be a pandas.DataFrame with columns " + "'symbol_Open', 'symbol_High', 'symbol_Low', 'symbol_Close'," + "and (optionally) 'symbol_Volume' for each symbol in symbol list" + f", i.e. {symbols}") + if data[base_columns[:-1]].isnull().values.any(): + raise ValueError('Some OHLC values are missing (NaN). ' + 'Please strip those lines with `df.dropna()` or ' + 'fill them in with `df.interpolate()` or whatever.') + if np.any(data[f'{symbol}_Close'] > cash): + warnings.warn('Some prices are larger than initial cash value. Note that fractional ' + 'trading is not supported. If you want to trade Bitcoin, ' + 'increase initial cash, or trade μBTC or satoshis instead (GH-134).', + stacklevel=2) + if not data.index.is_monotonic_increasing: + warnings.warn('Data index is not sorted in ascending order. Sorting.', + stacklevel=2) + data = data.sort_index() + if not isinstance(data.index, pd.DatetimeIndex): + warnings.warn('Data index is not datetime. Assuming simple periods, ' + 'but `pd.DateTimeIndex` is advised.', + stacklevel=2) self._data: pd.DataFrame = data + self._symbols = symbols self._broker = partial( _Broker, cash=cash, commission=commission, margin=margin, trade_on_close=trade_on_close, hedging=hedging, @@ -1133,7 +1207,7 @@ def run(self, **kwargs) -> pd.Series: dtype: object """ data = _Data(self._data.copy(deep=False)) - broker: _Broker = self._broker(data=data) + broker: _Broker = self._broker(data=data, symbols=self._symbols) strategy: Strategy = self._strategy(broker, data, kwargs) strategy.init() @@ -1186,6 +1260,7 @@ def run(self, **kwargs) -> pd.Series: self._results = compute_stats( trades=broker.closed_trades, equity=equity, + symbols=self._symbols, ohlc_data=self._data, risk_free_rate=0.0, strategy_instance=strategy, @@ -1591,6 +1666,7 @@ def plot(self, *, results: pd.Series = None, filename=None, plot_width=None, return plot( results=results, + symbols=self._symbols, df=self._data, indicators=results._strategy._indicators, filename=filename, diff --git a/backtesting/lib.py b/backtesting/lib.py index cbcd75c6..77e5173b 100644 --- a/backtesting/lib.py +++ b/backtesting/lib.py @@ -15,7 +15,7 @@ from itertools import compress from numbers import Number from inspect import currentframe -from typing import Sequence, Optional, Union, Callable +from typing import Sequence, Optional, Union, Callable, List import numpy as np import pandas as pd @@ -167,6 +167,7 @@ def quantile(series: Sequence, quantile: Union[None, float] = None): def compute_stats( *, + symbols: List[str], stats: pd.Series, data: pd.DataFrame, trades: pd.DataFrame = None, @@ -194,7 +195,7 @@ def compute_stats( equity[:] = stats._equity_curve.Equity.iloc[0] for t in trades.itertuples(index=False): equity.iloc[t.EntryBar:] += t.PnL - return _compute_stats(trades=trades, equity=equity, ohlc_data=data, + return _compute_stats(symbols=symbols, trades=trades, equity=equity, ohlc_data=data, risk_free_rate=risk_free_rate, strategy_instance=stats._strategy)