-
Notifications
You must be signed in to change notification settings - Fork 19
/
GameMaths.h
executable file
·1114 lines (1030 loc) · 30.3 KB
/
GameMaths.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#pragma once
//Kevin's header-only game maths library
//Based off simple maths library included with online source for 'Anton's OpenGL Tutorials' book by Anton Gerdelan
//Modified and added to by me over the years
// TODO: Maybe SIMD if it'll help, never needed it so far
//Original header:
/******************************************************************************\
| Anton's Maths Library |
| Email: anton at antongerdelan dot net |
| Revised and inlined into a header file: 16 Jun 2014 |
| Copyright Dr Anton Gerdelan |
|******************************************************************************|
| Commonly-used maths structures and functions |
| Simple-as-possible. No disgusting templates. |
| Structs vec3, mat4, versor. just hold arrays of floats called "v","m","q", |
| respectively. So, for example, to get values from a mat4 do: my_mat.m |
| A versor is the proper name for a unit quaternion. |
| This is C++ because it's sort-of convenient to be able to use maths operators|
\******************************************************************************/
#include <stdio.h>
#define _USE_MATH_DEFINES
#include <math.h>
#define MIN(a,b) (((a)<(b)) ? a : b)
#define MAX(a,b) (((a)>(b)) ? a : b)
#define CLAMP(x,lo,hi) (MIN ((hi), MAX ((lo), (x))))
//Compare two floats for equality
bool cmpf(float a, float b) {
return (fabs(a-b) < 0.000001f); //NB using fixed epsilon not ideal. Prob ok for smallish a,b
}
bool cmpf_e(float a, float b, float eps) {
return (fabs(a-b) < eps);
}
// data structures
union vec2;
union vec3;
union vec4;
struct mat3;
struct mat4;
struct versor;
// vector functions
float length(const vec2& v);
float length2(const vec2& v);
vec2 normalise(const vec2& v);
float dot(const vec2& a, const vec2& b);
float get_squared_dist(vec2 from, vec2 to);
float length(const vec3& v);
float length2(const vec3& v);
vec3 normalise(const vec3& v);
float dot(const vec3& a, const vec3& b);
vec3 cross(const vec3& a, const vec3& b);
float get_squared_dist(vec3 from, vec3 to);
float direction_to_heading(vec2 d);
vec2 heading_to_direction(float degrees);
// matrix functions
mat4 zero_mat4();
mat4 identity_mat4();
float determinant(const mat4& mm);
mat4 inverse(const mat4& mm);
mat4 transpose(const mat4& mm);
// affine functions
mat4 translate(const mat4& m, const vec3& v);
mat4 rotate_x_deg(const mat4& m, float deg);
mat4 rotate_y_deg(const mat4& m, float deg);
mat4 rotate_z_deg(const mat4& m, float deg);
mat4 rotate_axis_deg(const vec3& u, float a);
mat4 rotate_align(const vec3& u1, const vec3& u2);
mat4 scale(const mat4& m, const vec3& v);
mat4 scale(const mat4& m, float s);
//Precaution; <windows.h> defines near and far, sigh.
#undef near
#undef far
#undef wherever_you_are
// camera functions
mat4 look_at(const vec3& cam_pos, vec3 targ_pos, const vec3& up);
mat4 orthographic(float left, float right, float bottom, float top, float near, float far);
mat4 perspective(float fovy, float aspect, float near, float far);
// quaternion functions
versor quat_from_axis_rad(float radians, float x, float y, float z);
versor quat_from_axis_deg(float degrees, float x, float y, float z);
versor quat_from_axis_deg(float degrees, vec3 a);
mat4 quat_to_mat4(const versor& q);
float dot(const versor& q, const versor& r);
versor slerp(const versor& q, const versor& r);
// stupid overloading wouldn't let me use const
versor normalise(versor& q);
float dot(const versor& q, const versor& r);
versor slerp(versor& q, versor& r, float t);
// print functions
void print(const vec2& v);
void print(const vec3& v);
void print(const vec4& v);
void print(const mat3& m);
void print(const mat4& m);
void print(const versor& q);
// const used to convert degrees into radians
#define TAU 2.0 * M_PI
#define ONE_DEG_IN_RAD (2.0 * M_PI) / 360.0 // 0.017444444
#define ONE_RAD_IN_DEG 360.0 / (2.0 * M_PI) //57.2957795
#define DEG2RAD(a) ((a)*(M_PI/180.0))
#define RAD2DEG(a) ((a)*(180.0/M_PI))
//------------------------------------------------------------------------------
//Suppress anonymous struct warning
#ifdef __GNUC__
#pragma GCC diagnostic push
//This is awful but ignoring "-Wgnu-anonymous-struct" doesn't work on MinGW :(
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#ifdef __clang__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wgnu-anonymous-struct"
#endif
#ifdef _MSC_VER
#pragma warning(push, disable: 4201)
#endif
//------------------------------------------------------------------------------
union vec2 {
struct{
float v[2];
};
struct{
float x, y;
};
vec2() {}
vec2(float x, float y) {
v[0] = x;
v[1] = y;
}
vec2(vec3 v3); //fwd dec, can't define before vec3
vec2 operator+ (const vec2& rhs) {
vec2 vc;
vc.v[0] = v[0] + rhs.v[0];
vc.v[1] = v[1] + rhs.v[1];
return vc;
}
vec2& operator+= (const vec2& rhs) {
v[0] += rhs.v[0];
v[1] += rhs.v[1];
return *this; // return self
}
vec2 operator- (const vec2& rhs) {
vec2 vc;
vc.v[0] = v[0] - rhs.v[0];
vc.v[1] = v[1] - rhs.v[1];
return vc;
}
vec2& operator-= (const vec2& rhs) {
v[0] -= rhs.v[0];
v[1] -= rhs.v[1];
return *this;
}
vec2 operator+ (float rhs) {
vec2 vc;
vc.v[0] = v[0] + rhs;
vc.v[1] = v[1] + rhs;
return vc;
}
vec2 operator- (float rhs) {
vec2 vc;
vc.v[0] = v[0] - rhs;
vc.v[1] = v[1] - rhs;
return vc;
}
vec2 operator* (float rhs) {
vec2 vc;
vc.v[0] = v[0] * rhs;
vc.v[1] = v[1] * rhs;
return vc;
}
vec2 operator/ (float rhs) {
vec2 vc;
vc.v[0] = v[0] / rhs;
vc.v[1] = v[1] / rhs;
return vc;
}
vec2& operator*= (float rhs) {
v[0] = v[0] * rhs;
v[1] = v[1] * rhs;
return *this;
}
vec2& operator= (const vec2& rhs) {
v[0] = rhs.v[0];
v[1] = rhs.v[1];
return *this;
}
vec2 operator- () {
vec2 vc;
vc.v[0] = v[0] * (-1);
vc.v[1] = v[1] * (-1);
return vc;
}
bool operator== (const vec2& rhs) {
return (cmpf(v[0], rhs.v[0]) &&
cmpf(v[1],rhs.v[1]));
}
};
/* putting method definitions in the header inside the struct forces them to
be inlined http://gcc.gnu.org/onlinedocs/gcc-4.9.0/gcc/Inline.html
as far as i can tell from that rambling discourse, to get them to inline
otherwise we leave the cpp definition as is, but put a SECOND COPY with both
keywords "extern inline" beforehand. thanks stallman */
union vec3 {
struct{
float v[3];
};
struct {
float x, y, z;
};
vec3() {}
vec3 (float x, float y, float z) {
v[0] = x;
v[1] = y;
v[2] = z;
}
vec3(const vec2& vv, float z) {
v[0] = vv.v[0];
v[1] = vv.v[1];
v[2] = z;
}
vec3(const vec4& vv); //fwd dec, can't define before vec4
vec3 operator+ (const vec3& rhs) {
vec3 vc;
vc.v[0] = v[0] + rhs.v[0];
vc.v[1] = v[1] + rhs.v[1];
vc.v[2] = v[2] + rhs.v[2];
return vc;
}
vec3& operator+= (const vec3& rhs) {
v[0] += rhs.v[0];
v[1] += rhs.v[1];
v[2] += rhs.v[2];
return *this; // return self
}
vec3 operator- (const vec3& rhs) {
vec3 vc;
vc.v[0] = v[0] - rhs.v[0];
vc.v[1] = v[1] - rhs.v[1];
vc.v[2] = v[2] - rhs.v[2];
return vc;
}
vec3& operator-= (const vec3& rhs) {
v[0] -= rhs.v[0];
v[1] -= rhs.v[1];
v[2] -= rhs.v[2];
return *this;
}
vec3 operator+ (float rhs) {
vec3 vc;
vc.v[0] = v[0] + rhs;
vc.v[1] = v[1] + rhs;
vc.v[2] = v[2] + rhs;
return vc;
}
vec3 operator- (float rhs) {
vec3 vc;
vc.v[0] = v[0] - rhs;
vc.v[1] = v[1] - rhs;
vc.v[2] = v[2] - rhs;
return vc;
}
vec3 operator* (float rhs) {
vec3 vc;
vc.v[0] = v[0] * rhs;
vc.v[1] = v[1] * rhs;
vc.v[2] = v[2] * rhs;
return vc;
}
vec3 operator/ (float rhs) {
vec3 vc;
vc.v[0] = v[0] / rhs;
vc.v[1] = v[1] / rhs;
vc.v[2] = v[2] / rhs;
return vc;
}
vec3& operator*= (float rhs) {
v[0] = v[0] * rhs;
v[1] = v[1] * rhs;
v[2] = v[2] * rhs;
return *this;
}
vec3& operator= (const vec3& rhs) {
v[0] = rhs.v[0];
v[1] = rhs.v[1];
v[2] = rhs.v[2];
return *this;
}
//Negate
vec3 operator- () {
vec3 vc;
vc.v[0] = v[0] * (-1);
vc.v[1] = v[1] * (-1);
vc.v[2] = v[2] * (-1);
return vc;
}
bool operator== (const vec3& rhs) {
return (cmpf(v[0], rhs.v[0]) &&
cmpf(v[1], rhs.v[1]) &&
cmpf(v[2],rhs.v[2]));
}
};
union vec4 {
struct{
float v[4];
};
struct{
float x, y, z, w;
};
struct{
float r, g, b, a;
};
vec4() {}
vec4(float x, float y, float z, float w) {
v[0] = x;
v[1] = y;
v[2] = z;
v[3] = w;
}
vec4(const vec2& vv, float z, float w) {
v[0] = vv.v[0];
v[1] = vv.v[1];
v[2] = z;
v[3] = w;
}
vec4(const vec3& vv, float w) {
v[0] = vv.v[0];
v[1] = vv.v[1];
v[2] = vv.v[2];
v[3] = w;
}
};
struct mat3 {
float m[9];
/* note: entered in COLUMNS. Stored like this:
0 3 6
1 4 7
2 5 8
*/
mat3() {}
mat3(float a, float b, float c, float d, float e, float f, float g, float h, float i) {
m[0] = a; m[1] = b; m[2] = c;
m[3] = d; m[4] = e; m[5] = f;
m[6] = g; m[7] = h; m[8] = i;
}
mat3(mat4); //fwd dec, can't define before mat4
vec3 operator* (const vec3& rhs) const {
// 0x + 3y + 6z
float x =
m[0] * rhs.v[0] +
m[3] * rhs.v[1] +
m[6] * rhs.v[2];
// 1x + 4y + 7z
float y =
m[1] * rhs.v[0] +
m[4] * rhs.v[1] +
m[7] * rhs.v[2];
// 2x + 5y + 8z
float z =
m[2] * rhs.v[0] +
m[5] * rhs.v[1] +
m[8] * rhs.v[2];
return vec3 (x, y, z);
}
};
struct mat4 {
float m[16];
/* stored like this:
0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15
*/
mat4() {}
mat4(float a, float b, float c, float d, float e, float f, float g, float h,
float i, float j, float k, float l, float mm, float n, float o, float p) {
m[0] = a; m[1] = b; m[2] = c; m[3] = d;
m[4] = e; m[5] = f; m[6] = g; m[7] = h;
m[8] = i; m[9] = j; m[10] = k; m[11] = l;
m[12] = mm; m[13] = n; m[14] = o; m[15] = p;
}
vec4 operator* (const vec4& rhs) {
// 0x + 4y + 8z + 12w
float x =
m[0] * rhs.v[0] +
m[4] * rhs.v[1] +
m[8] * rhs.v[2] +
m[12] * rhs.v[3];
// 1x + 5y + 9z + 13w
float y =
m[1] * rhs.v[0] +
m[5] * rhs.v[1] +
m[9] * rhs.v[2] +
m[13] * rhs.v[3];
// 2x + 6y + 10z + 14w
float z =
m[2] * rhs.v[0] +
m[6] * rhs.v[1] +
m[10] * rhs.v[2] +
m[14] * rhs.v[3];
// 3x + 7y + 11z + 15w
float w =
m[3] * rhs.v[0] +
m[7] * rhs.v[1] +
m[11] * rhs.v[2] +
m[15] * rhs.v[3];
return vec4 (x, y, z, w);
}
mat4 operator* (const mat4& rhs) {
mat4 r = zero_mat4 ();
int r_index = 0;
for(int col = 0; col < 4; col++) {
for(int row = 0; row < 4; row++) {
float sum = 0.0f;
for(int i = 0; i < 4; i++) {
sum += rhs.m[i + col * 4] * m[row + i * 4];
}
r.m[r_index] = sum;
r_index++;
}
}
return r;
}
mat4& operator= (const mat4& rhs) {
for(int i = 0; i < 16; i++) {
m[i] = rhs.m[i];
}
return *this;
}
};
struct versor {
float q[4];
versor() {}
versor operator/ (float rhs) {
versor result;
result.q[0] = q[0] / rhs;
result.q[1] = q[1] / rhs;
result.q[2] = q[2] / rhs;
result.q[3] = q[3] / rhs;
return result;
}
versor operator* (float rhs) {
versor result;
result.q[0] = q[0] * rhs;
result.q[1] = q[1] * rhs;
result.q[2] = q[2] * rhs;
result.q[3] = q[3] * rhs;
return result;
}
versor operator* (const versor& rhs) {
versor result;
result.q[0] = rhs.q[0] * q[0] - rhs.q[1] * q[1] -
rhs.q[2] * q[2] - rhs.q[3] * q[3];
result.q[1] = rhs.q[0] * q[1] + rhs.q[1] * q[0] -
rhs.q[2] * q[3] + rhs.q[3] * q[2];
result.q[2] = rhs.q[0] * q[2] + rhs.q[1] * q[3] +
rhs.q[2] * q[0] - rhs.q[3] * q[1];
result.q[3] = rhs.q[0] * q[3] - rhs.q[1] * q[2] +
rhs.q[2] * q[1] + rhs.q[3] * q[0];
// re-normalise in case of mangling
return normalise(result);
}
versor operator+ (const versor& rhs) {
versor result;
result.q[0] = rhs.q[0] + q[0];
result.q[1] = rhs.q[1] + q[1];
result.q[2] = rhs.q[2] + q[2];
result.q[3] = rhs.q[3] + q[3];
// re-normalise in case of mangling
return normalise(result);
}
};
/*------------------------------VECTOR FUNCTIONS------------------------------*/
//---vec2---//
inline vec2::vec2(vec3 v3) {//Truncation ctor
v[0] = v3.v[0];
v[1] = v3.v[1];
}
inline float length(const vec2& v) {
return sqrt(v.v[0] * v.v[0] + v.v[1] * v.v[1]);
}
// squared length
inline float length2(const vec2& v) {
return v.v[0] * v.v[0] + v.v[1] * v.v[1];
}
// returns unit vector in direction of v
inline vec2 normalise(const vec2& v) {
vec2 vb;
float l = length(v);
if(0.0f == l) {
return vec2(0.0f, 0.0f);
}
vb.v[0] = v.v[0] / l;
vb.v[1] = v.v[1] / l;
return vb;
}
inline float dot(const vec2& a, const vec2& b) {
return a.v[0] * b.v[0] + a.v[1] * b.v[1];
}
inline float get_squared_dist(vec2 from, vec2 to) {
float x = (to.v[0] - from.v[0]) * (to.v[0] - from.v[0]);
float y = (to.v[1] - from.v[1]) * (to.v[1] - from.v[1]);
return x + y;
}
//---vec3---//
inline vec3::vec3(const vec4& vv) {
v[0] = vv.v[0];
v[1] = vv.v[1];
v[2] = vv.v[2];
}
inline float length(const vec3& v) {
return sqrt (v.v[0] * v.v[0] + v.v[1] * v.v[1] + v.v[2] * v.v[2]);
}
// squared length
inline float length2(const vec3& v) {
return v.v[0] * v.v[0] + v.v[1] * v.v[1] + v.v[2] * v.v[2];
}
// returns unit vector in direction of v
inline vec3 normalise(const vec3& v) {
vec3 vb;
float l = length(v);
if(0.0f == l) {
return vec3(0.0f, 0.0f, 0.0f);
}
vb.v[0] = v.v[0] / l;
vb.v[1] = v.v[1] / l;
vb.v[2] = v.v[2] / l;
return vb;
}
inline float dot(const vec3& a, const vec3& b) {
return a.v[0] * b.v[0] + a.v[1] * b.v[1] + a.v[2] * b.v[2];
}
inline vec3 cross(const vec3& a, const vec3& b) {
float x = a.v[1] * b.v[2] - a.v[2] * b.v[1];
float y = a.v[2] * b.v[0] - a.v[0] * b.v[2];
float z = a.v[0] * b.v[1] - a.v[1] * b.v[0];
return vec3(x, y, z);
}
inline float get_squared_dist(vec3 from, vec3 to) {
float x = (to.v[0] - from.v[0]) * (to.v[0] - from.v[0]);
float y = (to.v[1] - from.v[1]) * (to.v[1] - from.v[1]);
float z = (to.v[2] - from.v[2]) * (to.v[2] - from.v[2]);
return x + y + z;
}
//converts a 2D direction vector into a heading in degrees
//angle vector makes with positive x-axis
inline float direction_to_heading(vec2 dir) {
return atan2(dir.v[1], dir.v[0]) * ONE_RAD_IN_DEG;
}
//converts an angle in degrees to a 2D vector which makes that angle with the positive x-axis
inline vec2 heading_to_direction(float degrees) {
float rad = degrees * ONE_DEG_IN_RAD;
return vec2(cos(rad), sin(rad));
//return vec3 (-sinf (rad), 0.0f, -cosf (rad));
}
/*-----------------------------MATRIX FUNCTIONS-------------------------------*/
/*
inline mat3 zero_mat3() {
return mat3 (
0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f
);
}
*/
/*
inline mat3 identity_mat3() {
return mat3 (
1.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 1.0f
);
}
*/
inline mat4 zero_mat4() {
return mat4 (
0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f
);
}
inline mat4 identity_mat4() {
return mat4 (
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f
);
/* mat4 array layout
0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15
*/
}
inline mat3::mat3(mat4 RTS){
//Grab R and S from RTS matrix
m[0] = RTS.m[0];
m[1] = RTS.m[1];
m[2] = RTS.m[2];
m[3] = RTS.m[4];
m[4] = RTS.m[5];
m[5] = RTS.m[6];
m[6] = RTS.m[8];
m[7] = RTS.m[9];
m[8] = RTS.m[10];
}
// returns a scalar value with the determinant for a 4x4 matrix
// see http://www.euclideanspace.com/maths/algebra/matrix/functions/determinant/fourD/index.htm
inline float determinant(const mat4& mm) {
return
mm.m[12] * mm.m[9] * mm.m[6] * mm.m[3] -
mm.m[8] * mm.m[13] * mm.m[6] * mm.m[3] -
mm.m[12] * mm.m[5] * mm.m[10] * mm.m[3] +
mm.m[4] * mm.m[13] * mm.m[10] * mm.m[3] +
mm.m[8] * mm.m[5] * mm.m[14] * mm.m[3] -
mm.m[4] * mm.m[9] * mm.m[14] * mm.m[3] -
mm.m[12] * mm.m[9] * mm.m[2] * mm.m[7] +
mm.m[8] * mm.m[13] * mm.m[2] * mm.m[7] +
mm.m[12] * mm.m[1] * mm.m[10] * mm.m[7] -
mm.m[0] * mm.m[13] * mm.m[10] * mm.m[7] -
mm.m[8] * mm.m[1] * mm.m[14] * mm.m[7] +
mm.m[0] * mm.m[9] * mm.m[14] * mm.m[7] +
mm.m[12] * mm.m[5] * mm.m[2] * mm.m[11] -
mm.m[4] * mm.m[13] * mm.m[2] * mm.m[11] -
mm.m[12] * mm.m[1] * mm.m[6] * mm.m[11] +
mm.m[0] * mm.m[13] * mm.m[6] * mm.m[11] +
mm.m[4] * mm.m[1] * mm.m[14] * mm.m[11] -
mm.m[0] * mm.m[5] * mm.m[14] * mm.m[11] -
mm.m[8] * mm.m[5] * mm.m[2] * mm.m[15] +
mm.m[4] * mm.m[9] * mm.m[2] * mm.m[15] +
mm.m[8] * mm.m[1] * mm.m[6] * mm.m[15] -
mm.m[0] * mm.m[9] * mm.m[6] * mm.m[15] -
mm.m[4] * mm.m[1] * mm.m[10] * mm.m[15] +
mm.m[0] * mm.m[5] * mm.m[10] * mm.m[15];
}
/* returns a 16-element array that is the inverse of a 16-element array (4x4
matrix). see http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm */
inline mat4 inverse(const mat4& mm) {
float det = determinant(mm);
/* there is no inverse if determinant is zero (not likely unless scale is
broken) */
if(0.0f == det) {
fprintf(stderr, "WARNING. matrix has no determinant. can not invert\n");
return mm;
}
float inv_det = 1.0f / det;
return mat4(
inv_det * (
mm.m[9] * mm.m[14] * mm.m[7] - mm.m[13] * mm.m[10] * mm.m[7] +
mm.m[13] * mm.m[6] * mm.m[11] - mm.m[5] * mm.m[14] * mm.m[11] -
mm.m[9] * mm.m[6] * mm.m[15] + mm.m[5] * mm.m[10] * mm.m[15]
),
inv_det * (
mm.m[13] * mm.m[10] * mm.m[3] - mm.m[9] * mm.m[14] * mm.m[3] -
mm.m[13] * mm.m[2] * mm.m[11] + mm.m[1] * mm.m[14] * mm.m[11] +
mm.m[9] * mm.m[2] * mm.m[15] - mm.m[1] * mm.m[10] * mm.m[15]
),
inv_det * (
mm.m[5] * mm.m[14] * mm.m[3] - mm.m[13] * mm.m[6] * mm.m[3] +
mm.m[13] * mm.m[2] * mm.m[7] - mm.m[1] * mm.m[14] * mm.m[7] -
mm.m[5] * mm.m[2] * mm.m[15] + mm.m[1] * mm.m[6] * mm.m[15]
),
inv_det * (
mm.m[9] * mm.m[6] * mm.m[3] - mm.m[5] * mm.m[10] * mm.m[3] -
mm.m[9] * mm.m[2] * mm.m[7] + mm.m[1] * mm.m[10] * mm.m[7] +
mm.m[5] * mm.m[2] * mm.m[11] - mm.m[1] * mm.m[6] * mm.m[11]
),
inv_det * (
mm.m[12] * mm.m[10] * mm.m[7] - mm.m[8] * mm.m[14] * mm.m[7] -
mm.m[12] * mm.m[6] * mm.m[11] + mm.m[4] * mm.m[14] * mm.m[11] +
mm.m[8] * mm.m[6] * mm.m[15] - mm.m[4] * mm.m[10] * mm.m[15]
),
inv_det * (
mm.m[8] * mm.m[14] * mm.m[3] - mm.m[12] * mm.m[10] * mm.m[3] +
mm.m[12] * mm.m[2] * mm.m[11] - mm.m[0] * mm.m[14] * mm.m[11] -
mm.m[8] * mm.m[2] * mm.m[15] + mm.m[0] * mm.m[10] * mm.m[15]
),
inv_det * (
mm.m[12] * mm.m[6] * mm.m[3] - mm.m[4] * mm.m[14] * mm.m[3] -
mm.m[12] * mm.m[2] * mm.m[7] + mm.m[0] * mm.m[14] * mm.m[7] +
mm.m[4] * mm.m[2] * mm.m[15] - mm.m[0] * mm.m[6] * mm.m[15]
),
inv_det * (
mm.m[4] * mm.m[10] * mm.m[3] - mm.m[8] * mm.m[6] * mm.m[3] +
mm.m[8] * mm.m[2] * mm.m[7] - mm.m[0] * mm.m[10] * mm.m[7] -
mm.m[4] * mm.m[2] * mm.m[11] + mm.m[0] * mm.m[6] * mm.m[11]
),
inv_det * (
mm.m[8] * mm.m[13] * mm.m[7] - mm.m[12] * mm.m[9] * mm.m[7] +
mm.m[12] * mm.m[5] * mm.m[11] - mm.m[4] * mm.m[13] * mm.m[11] -
mm.m[8] * mm.m[5] * mm.m[15] + mm.m[4] * mm.m[9] * mm.m[15]
),
inv_det * (
mm.m[12] * mm.m[9] * mm.m[3] - mm.m[8] * mm.m[13] * mm.m[3] -
mm.m[12] * mm.m[1] * mm.m[11] + mm.m[0] * mm.m[13] * mm.m[11] +
mm.m[8] * mm.m[1] * mm.m[15] - mm.m[0] * mm.m[9] * mm.m[15]
),
inv_det * (
mm.m[4] * mm.m[13] * mm.m[3] - mm.m[12] * mm.m[5] * mm.m[3] +
mm.m[12] * mm.m[1] * mm.m[7] - mm.m[0] * mm.m[13] * mm.m[7] -
mm.m[4] * mm.m[1] * mm.m[15] + mm.m[0] * mm.m[5] * mm.m[15]
),
inv_det * (
mm.m[8] * mm.m[5] * mm.m[3] - mm.m[4] * mm.m[9] * mm.m[3] -
mm.m[8] * mm.m[1] * mm.m[7] + mm.m[0] * mm.m[9] * mm.m[7] +
mm.m[4] * mm.m[1] * mm.m[11] - mm.m[0] * mm.m[5] * mm.m[11]
),
inv_det * (
mm.m[12] * mm.m[9] * mm.m[6] - mm.m[8] * mm.m[13] * mm.m[6] -
mm.m[12] * mm.m[5] * mm.m[10] + mm.m[4] * mm.m[13] * mm.m[10] +
mm.m[8] * mm.m[5] * mm.m[14] - mm.m[4] * mm.m[9] * mm.m[14]
),
inv_det * (
mm.m[8] * mm.m[13] * mm.m[2] - mm.m[12] * mm.m[9] * mm.m[2] +
mm.m[12] * mm.m[1] * mm.m[10] - mm.m[0] * mm.m[13] * mm.m[10] -
mm.m[8] * mm.m[1] * mm.m[14] + mm.m[0] * mm.m[9] * mm.m[14]
),
inv_det * (
mm.m[12] * mm.m[5] * mm.m[2] - mm.m[4] * mm.m[13] * mm.m[2] -
mm.m[12] * mm.m[1] * mm.m[6] + mm.m[0] * mm.m[13] * mm.m[6] +
mm.m[4] * mm.m[1] * mm.m[14] - mm.m[0] * mm.m[5] * mm.m[14]
),
inv_det * (
mm.m[4] * mm.m[9] * mm.m[2] - mm.m[8] * mm.m[5] * mm.m[2] +
mm.m[8] * mm.m[1] * mm.m[6] - mm.m[0] * mm.m[9] * mm.m[6] -
mm.m[4] * mm.m[1] * mm.m[10] + mm.m[0] * mm.m[5] * mm.m[10]
)
);
}
// returns a 16-element array flipped on the main diagonal
inline mat4 transpose(const mat4& mm) {
return mat4(
mm.m[0], mm.m[4], mm.m[8], mm.m[12],
mm.m[1], mm.m[5], mm.m[9], mm.m[13],
mm.m[2], mm.m[6], mm.m[10], mm.m[14],
mm.m[3], mm.m[7], mm.m[11], mm.m[15]
);
}
/*--------------------------AFFINE MATRIX FUNCTIONS---------------------------*/
// translate a 4d matrix with xyz array
inline mat4 translate(const mat4& m, const vec3& v) {
mat4 m_t = identity_mat4();
m_t.m[12] = v.v[0];
m_t.m[13] = v.v[1];
m_t.m[14] = v.v[2];
return m_t * m;
}
// rotate around x axis by an angle in degrees
inline mat4 rotate_x_deg(const mat4& m, float deg) {
// convert to radians
float rad = deg * ONE_DEG_IN_RAD;
mat4 m_r = identity_mat4();
m_r.m[5] = cos(rad);
m_r.m[9] = -sin(rad);
m_r.m[6] = sin(rad);
m_r.m[10] = cos(rad);
return m_r * m;
}
// rotate around y axis by an angle in degrees
inline mat4 rotate_y_deg(const mat4& m, float deg) {
// convert to radians
float rad = deg * ONE_DEG_IN_RAD;
mat4 m_r = identity_mat4();
m_r.m[0] = cos(rad);
m_r.m[8] = sin(rad);
m_r.m[2] = -sin(rad);
m_r.m[10] = cos(rad);
return m_r * m;
}
// rotate around z axis by an angle in degrees
inline mat4 rotate_z_deg(const mat4& m, float deg) {
// convert to radians
float rad = deg * ONE_DEG_IN_RAD;
mat4 m_r = identity_mat4();
m_r.m[0] = cos(rad);
m_r.m[4] = -sin(rad);
m_r.m[1] = sin(rad);
m_r.m[5] = cos(rad);
return m_r * m;
}
//Returns rotation matrix to rotate around axis u by a degrees
//from http://www.iquilezles.org/www/articles/noacos/noacos.htm
inline mat4 rotate_axis_deg(const vec3& u, float a){
//Convert to radians
float rad = a * ONE_DEG_IN_RAD;
float sin_a = sinf(rad);
float cos_a = cosf(rad);
float inv_cos_a = 1.0f - cos_a;
return mat4(
u.v[0]*u.v[0]*inv_cos_a + cos_a,
u.v[0]*u.v[1]*inv_cos_a + sin_a*u.v[2],
u.v[0]*u.v[2]*inv_cos_a - sin_a*u.v[1],
0,
u.v[1]*u.v[0]*inv_cos_a - sin_a*u.v[2],
u.v[1]*u.v[1]*inv_cos_a + cos_a,
u.v[1]*u.v[2]*inv_cos_a + sin_a*u.v[0],
0,
u.v[2]*u.v[0]*inv_cos_a + sin_a*u.v[1],
u.v[2]*u.v[1]*inv_cos_a - sin_a*u.v[0],
u.v[2]*u.v[2]*inv_cos_a + cos_a,
0,
0, 0, 0, 1
);
}
//Returns rotation matrix to align u1 with u2 (MUST BE UNIT VECTORS)
//from http://www.iquilezles.org/www/articles/noacos/noacos.htm
inline mat4 rotate_align(const vec3& u1, const vec3& u2){
vec3 axis = cross(u1,u2);
float cos_a = dot(u1,u2);
float k = 1.0f/(1.0f+cos_a);
if(cmpf(cos_a,-1)) //vectors are opposite
return scale(identity_mat4(),-1);
return mat4(
axis.v[0]*axis.v[0]*k + cos_a,
axis.v[0]*axis.v[1]*k + axis.v[2],
axis.v[0]*axis.v[2]*k - axis.v[1],
0,
axis.v[1]*axis.v[0]*k - axis.v[2],
axis.v[1]*axis.v[1]*k + cos_a,
axis.v[1]*axis.v[2]*k + axis.v[0],
0,
axis.v[2]*axis.v[0]*k + axis.v[1],
axis.v[2]*axis.v[1]*k - axis.v[0],
axis.v[2]*axis.v[2]*k + cos_a,
0,
0, 0, 0, 1
);
}
// scale a matrix by [x, y, z]
inline mat4 scale(const mat4& m, const vec3& v) {
mat4 a = identity_mat4();
a.m[0] = v.v[0];
a.m[5] = v.v[1];
a.m[10] = v.v[2];
return a * m;
}
//scale a matrix uniformly by s
inline mat4 scale(const mat4& m, float s) {
mat4 a = identity_mat4();
a.m[0] = s;
a.m[5] = s;
a.m[10] = s;
return a * m;
}
/*-----------------------VIRTUAL CAMERA MATRIX FUNCTIONS----------------------*/
// returns a view matrix using the opengl lookAt style. COLUMN ORDER.
inline mat4 look_at(const vec3& cam_pos, vec3 targ_pos, const vec3& up) {
// inverse translation
mat4 p = identity_mat4();
p = translate(p, vec3(-cam_pos.v[0], -cam_pos.v[1], -cam_pos.v[2]));
vec3 dist = targ_pos - cam_pos;
vec3 fwd = normalise(dist);
vec3 rgt = normalise(cross(fwd, up));
vec3 up_act = normalise(cross(rgt, fwd));
mat4 ori = identity_mat4();
ori.m[0] = rgt.v[0];
ori.m[4] = rgt.v[1];
ori.m[8] = rgt.v[2];
ori.m[1] = up_act.v[0];
ori.m[5] = up_act.v[1];
ori.m[9] = up_act.v[2];
ori.m[2] = -fwd.v[0];
ori.m[6] = -fwd.v[1];
ori.m[10] = -fwd.v[2];
/* ori = {
Rx Ux -Fx 0
Ry Uy -Fy 0
Rz Uz -Fz 0
0 0 0 1
}
p = {
1 0 0 -Px
0 1 0 -Py
0 0 1 -Pz
0 0 0 1
}
*/
return ori * p;//p * ori;
}
//Returns an orthographic projection matrix
inline mat4 orthographic(float left, float right, float bottom, float top, float near, float far) {
mat4 m = identity_mat4();
m.m[0] = 2/(right-left);
m.m[5] = 2/(top-bottom);
m.m[10] = 2/(far-near);
m.m[12] = -(right+left)/(right-left);
m.m[13] = -(top+bottom)/(top-bottom);
m.m[14] = (far+near)/(far-near);
return m;
}
// returns a perspective function mimicking the opengl projection style.
inline mat4 perspective(float fovy, float aspect, float near, float far) {
float fov_rad = fovy * ONE_DEG_IN_RAD;
float range = tan(fov_rad / 2.0f) * near;
float sx = (2.0f * near) / (range * aspect + range * aspect);
float sy = near / range;
float sz = -(far + near) / (far - near);
float pz = -(2.0f * far * near) / (far - near);
mat4 m = zero_mat4(); // make sure bottom-right corner is zero
m.m[0] = sx;
m.m[5] = sy;
m.m[10] = sz;
m.m[14] = pz;
m.m[11] = -1.0f;
return m;
}
/*----------------------------HAMILTON IN DA HOUSE!---------------------------*/
inline versor quat_from_axis_rad(float radians, float x, float y, float z) {
versor result;
result.q[0] = cos(radians / 2.0);
result.q[1] = sin(radians / 2.0) * x;
result.q[2] = sin(radians / 2.0) * y;
result.q[3] = sin(radians / 2.0) * z;
return result;
}
inline versor quat_from_axis_deg(float degrees, float x, float y, float z) {
return quat_from_axis_rad(ONE_DEG_IN_RAD * degrees, x, y, z);
}
inline versor quat_from_axis_deg(float degrees, vec3 a) {
return quat_from_axis_rad(ONE_DEG_IN_RAD * degrees, a.v[0], a.v[1], a.v[2]);
}
inline mat4 quat_to_mat4(const versor& q) {
float w = q.q[0];
float x = q.q[1];
float y = q.q[2];
float z = q.q[3];
return mat4(
1.0f - 2.0f * y * y - 2.0f * z * z,