-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLightManager.py
283 lines (225 loc) · 12.7 KB
/
LightManager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import keypad
import neopixel
import time
class LightEffect:
# Type: 1 = Sequence
def __init__(self, type: int = 0, color = (0, 0, 0), sequence: list[list[int]] = []) -> None:
self.type = type
self.color = color
self.sequence = sequence
class LightManager:
# Return the list of element in a matrix
def matFlat(self, matrix):
flattened = []
for row in matrix:
flattened.extend(row)
return flattened
# Return distance of a point from the center of a matrix
def matDist(self, matrix):
centre = (len(matrix) // 2) - (len(matrix)+1)%2*0.5
distances = []
for i in range(len(matrix)):
for j in range(len(matrix)):
distance = max(abs(i - centre), abs(j - centre))
distances.append(int(distance))
matriceUp = [[] for _ in range(distances[0]+1)]
for y in range(len(matrix)):
for x in range(len(matrix)):
matriceUp[distances[len(matrix)*y + x]].append(matrix[y][x])
return matriceUp
# Rotate a matrix by 90 degrees, n: 0 = 0°, 1 = 90°, 2 = 180°, 3 = 270°/-90°
def matRot(self, matrix, n):
rotMatrix = [[0] * len(matrix) for _ in range(len(matrix[0]))]
if (n <= 0):
return matrix
for _ in range(n):
for y in range(len(matrix)):
for x in range(len(matrix[0])):
rotMatrix[x][len(matrix) - 1 - y] = matrix[y][x]
if (n == 1):
return rotMatrix
return self.matRot(rotMatrix, n - 1)
# Create a cube pattern centered on the top face of the cube with all connected faces
def createCubeTopView(self) -> list[list[int]]:
cubeTopView = [[-1] * (self.size * 3) for _ in range(self.size * 3)]
for y in range(self.size):
for x in range(self.size):
cubeTopView[y + self.size * 0][x + self.size * 1] = self.matRot(self.NF, 0)[y][x]
cubeTopView[y + self.size * 1][x + self.size * 1] = self.matRot(self.TF, 0)[y][x]
cubeTopView[y + self.size * 1][x + self.size * 0] = self.matRot(self.WF, 0)[y][x]
cubeTopView[y + self.size * 1][x + self.size * 2] = self.matRot(self.EF, 0)[y][x]
cubeTopView[y + self.size * 2][x + self.size * 1] = self.matRot(self.SF, 0)[y][x]
return cubeTopView
# Create a cube pattern centered on the north face of the cube with all connected faces
def createCubeNorthView(self) -> list[list[int]]:
cubeNorthView = [[-1] * (self.size * 5) for _ in range(self.size * 3)]
for y in range(self.size):
for x in range(self.size):
cubeNorthView[y + self.size * 0][x + self.size * 2] = self.matRot(self.SF, 2)[y][x]
cubeNorthView[y + self.size * 1][x + self.size * 2] = self.matRot(self.TF, 2)[y][x]
cubeNorthView[y + self.size * 2][x + self.size * 0] = self.matRot(self.SF, 0)[y][x]
cubeNorthView[y + self.size * 2][x + self.size * 1] = self.matRot(self.EF, 1)[y][x]
cubeNorthView[y + self.size * 2][x + self.size * 2] = self.matRot(self.NF, 2)[y][x]
cubeNorthView[y + self.size * 2][x + self.size * 3] = self.matRot(self.WF, 3)[y][x]
cubeNorthView[y + self.size * 2][x + self.size * 4] = self.matRot(self.SF, 0)[y][x]
return cubeNorthView
# Create a cube pattern centered on the south face of the cube with all connected faces
def createCubeSouthView(self) -> list[list[int]]:
cubeSouthView = [[-1] * (self.size * 5) for _ in range(self.size * 3)]
for y in range(self.size):
for x in range(self.size):
cubeSouthView[y + self.size * 0][x + self.size * 2] = self.matRot(self.NF, 0)[y][x]
cubeSouthView[y + self.size * 1][x + self.size * 2] = self.matRot(self.TF, 0)[y][x]
cubeSouthView[y + self.size * 2][x + self.size * 0] = self.matRot(self.NF, 2)[y][x]
cubeSouthView[y + self.size * 2][x + self.size * 1] = self.matRot(self.WF, 3)[y][x]
cubeSouthView[y + self.size * 2][x + self.size * 2] = self.matRot(self.SF, 0)[y][x]
cubeSouthView[y + self.size * 2][x + self.size * 3] = self.matRot(self.EF, 1)[y][x]
cubeSouthView[y + self.size * 2][x + self.size * 4] = self.matRot(self.NF, 2)[y][x]
return cubeSouthView
# Create a cube pattern centered on the east east of the cube with all connected faces
def createCubeEastView(self) -> list[list[int]]:
cubeEastView = [[-1] * (self.size * 5) for _ in range(self.size * 4)]
for y in range(self.size):
for x in range(self.size):
cubeEastView[y + self.size * 0][x + self.size * 2] = self.matRot(self.WF, 1)[y][x]
cubeEastView[y + self.size * 1][x + self.size * 2] = self.matRot(self.TF, 1)[y][x]
cubeEastView[y + self.size * 2][x + self.size * 0] = self.matRot(self.WF, 3)[y][x]
cubeEastView[y + self.size * 2][x + self.size * 1] = self.matRot(self.SF, 0)[y][x]
cubeEastView[y + self.size * 2][x + self.size * 2] = self.matRot(self.EF, 1)[y][x]
cubeEastView[y + self.size * 2][x + self.size * 3] = self.matRot(self.NF, 2)[y][x]
cubeEastView[y + self.size * 2][x + self.size * 4] = self.matRot(self.WF, 3)[y][x]
return cubeEastView
# Create a cube pattern centered on the west face of the cube with all connected faces
def createCubeWestView(self) -> list[list[int]]:
cubeWestView = [[-1] * (self.size * 5) for _ in range(self.size * 3)]
for y in range(self.size):
for x in range(self.size):
cubeWestView[y + self.size * 0][x + self.size * 2] = self.matRot(self.EF, 3)[y][x]
cubeWestView[y + self.size * 1][x + self.size * 2] = self.matRot(self.TF, 3)[y][x]
cubeWestView[y + self.size * 2][x + self.size * 0] = self.matRot(self.EF, 1)[y][x]
cubeWestView[y + self.size * 2][x + self.size * 1] = self.matRot(self.NF, 2)[y][x]
cubeWestView[y + self.size * 2][x + self.size * 2] = self.matRot(self.WF, 3)[y][x]
cubeWestView[y + self.size * 2][x + self.size * 3] = self.matRot(self.SF, 0)[y][x]
cubeWestView[y + self.size * 2][x + self.size * 4] = self.matRot(self.EF, 1)[y][x]
return cubeWestView
# Create a raimbow pattern with all steps and gestion of top face step by distance
def createRaimbow(self) -> list[list[int]]:
raimbowPattern = []
raimbowTop = self.matDist(self.TF)
for i in range(len(raimbowTop)):
raimbowPattern.append(raimbowTop[i])
for y in range(self.size):
step = []
for x in range(self.size):
step.append(self.SF[y][x])
step.append(self.matRot(self.EF, 1)[y][x])
step.append(self.matRot(self.NF, 2)[y][x])
step.append(self.matRot(self.WF, 3)[y][x])
raimbowPattern.append(step)
return raimbowPattern
# Update the raimbow color
def raimbowColorUpdate(self) -> None:
self.RAIMBOWCOLOR = (self.RAIMBOWCOLOR + self.RAIMBOWDIRECTION) % 255
self.CUSTOMRAIMBOWSTEP = (self.CUSTOMRAIMBOWSTEP + self.RAIMBOWDIRECTION) % 255
# Update the brightness
def brightnessUpdate(self) -> None:
self.BRIGHTNESS = self.BRIGHTNESS + self.BRIGHTNESS_INCREASE
if self.BRIGHTNESS >= 0.1 or self.BRIGHTNESS <= 0.01:
self.BRIGHTNESS_INCREASE = -self.BRIGHTNESS_INCREASE
def interpolate_color(self, start_color, end_color, n_steps):
start_r, start_g, start_b = start_color
end_r, end_g, end_b = end_color
step_r = (end_r - start_r) / n_steps
step_g = (end_g - start_g) / n_steps
step_b = (end_b - start_b) / n_steps
interpolated_colors = [
(
round(start_r + step_r * i),
round(start_g + step_g * i),
round(start_b + step_b * i)
)
for i in range(n_steps + 1)
]
return interpolated_colors
# Detect the face of a key
def detectFace(self, key: int) -> int:
if key in self.matFlat(self.TF):
return [self._CTV, (self.matFlat(self._CTV).index(key) // len(self._CTV[0]), self.matFlat(self._CTV).index(key) % len(self._CTV[0]))]
elif key in self.matFlat(self.NF):
return [self._CNV, (self.matFlat(self._CNV).index(key) // len(self._CNV[0]), self.matFlat(self._CNV).index(key) % len(self._CNV[0]))]
elif key in self.matFlat(self.SF):
return [self._CSV, (self.matFlat(self._CSV).index(key) // len(self._CSV[0]), self.matFlat(self._CSV).index(key) % len(self._CSV[0]))]
elif key in self.matFlat(self.EF):
return [self._CEV, (self.matFlat(self._CEV).index(key) // len(self._CEV[0]), self.matFlat(self._CEV).index(key) % len(self._CEV[0]))]
elif key in self.matFlat(self.WF):
return [self._CWV, (self.matFlat(self._CWV).index(key) // len(self._CWV[0]), self.matFlat(self._CWV).index(key) % len(self._CWV[0]))]
else:
return -1
# Create a ripple effect from a key coordinate
def rippleEffect(self, tab, actual, previous = [], counter = 0):
interpolateColor = self.interpolate_color((255, 0, 0), (0, 0, 255), 3)
if (interpolateColor[len(interpolateColor) - 1] != (0,0,0)):
interpolateColor.append((0,0,0))
if (len(self.matFlat(previous)) >= self.size * self.size * 5):
for k in range(1, len(interpolateColor)):
for i in range(0, min(len(interpolateColor), len(previous))):
for j in range(0, len(previous[i])):
y = previous[i][j][0]
x = previous[i][j][1]
self.p[tab[y][x]] = interpolateColor[min(len(interpolateColor) - 1, i + k)]
self.p.show()
time.sleep(0.05)
return 0
newPrevious = []
for i in range(0, len(actual)):
y = actual[i][0]
x = actual[i][1]
if (y >= 0) and (y < len(tab)) and (x >= 0) and (x < len(tab[0])) and (tab[y][x] != -1):
newPrevious.append(actual[i])
previous.insert(0, newPrevious)
for i in range(0, min(len(interpolateColor), len(previous))):
for j in range(0, len(previous[i])):
y = previous[i][j][0]
x = previous[i][j][1]
self.p[tab[y][x]] = interpolateColor[i]
previousFlat = self.matFlat(previous)
self.p.show()
actual = []
for i in range(0, len(newPrevious)):
y = newPrevious[i][0]
x = newPrevious[i][1]
if (y + 1, x) not in previousFlat and (y + 1, x) not in actual:
actual.append((y + 1, x))
if (y - 1, x) not in previousFlat and (y - 1, x) not in actual:
actual.append((y - 1, x))
if (y, x + 1) not in previousFlat and (y, x + 1) not in actual:
actual.append((y, x + 1))
if (y, x - 1) not in previousFlat and (y, x - 1) not in actual:
actual.append((y, x - 1))
time.sleep(0.05)
return self.rippleEffect(tab, actual, previous, counter+1)
def rippleInit(self, tab, actual):
self.rippleEffect(tab, [actual], [], 0)
def __init__(self, size: int, pixels: neopixel.NeoPixel, keys: keypad.KeyMatrix, TF: list[list[int]], NF: list[list[int]], SF: list[list[int]], EF: list[list[int]], WF: list[list[int]]):
self.RAIMBOWCOLOR: int = 0
self.RAIMBOWDIRECTION: int = 1
self.CUSTOMRAIMBOWSTEP: int = 0
self.BRIGHTNESS: int = 0.1
self.BRIGHTNESS_INCREASE: int = -0.0005
self.colorEffect: int = 7
self.color: int = 0
self.colorSwitch: int = TF[0][0]
self.size: int = size
self.p: neopixel.NeoPixel = pixels
self.k: keypad.KeyMatrix = keys
self.TF: list[list[int]] = TF
self.NF: list[list[int]] = NF
self.SF: list[list[int]] = SF
self.EF: list[list[int]] = EF
self.WF: list[list[int]] = WF
self._CTV: list[list[int]] = self.createCubeTopView() # Cube Top View
self._CNV: list[list[int]] = self.createCubeNorthView() # Cube North View
self._CSV: list[list[int]] = self.createCubeSouthView() # Cube South View
self._CEV: list[list[int]] = self.createCubeEastView() # Cube East View
self._CWV: list[list[int]] = self.createCubeWestView() # Cube West View
self.RP: list[list[int]] = self.createRaimbow() # Raimbow Pattern