-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAcoustoVisualDE_Gg_yags.R
882 lines (758 loc) · 41.3 KB
/
AcoustoVisualDE_Gg_yags.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
# Acoustovisual density estimation
library(mrds)
library(lubridate)
library(magic)
library(mgcv)
library(openair)
library(prodlim)
library(psych)
setwd("/Volumes/EXTHARD/NAS/")
source('/Volumes/EXTHARD/NAS/AcoustoVisualDE/AcoustoVisualDE/plot_missingdata.R')
source('/Volumes/EXTHARD/NAS/AcoustoVisualDE/AcoustoVisualDE/plot_cleveland.R')
source('/Volumes/EXTHARD/NAS/AcoustoVisualDE/AcoustoVisualDE/transform_covars.R')
source('/Volumes/EXTHARD/NAS/AcoustoVisualDE/AcoustoVisualDE/plot_covarDensity.R')
source('/Volumes/EXTHARD/NAS/AcoustoVisualDE/AcoustoVisualDE/GetModelMetadata.R')
#### Parameters needed: ####
outDir <- "/Volumes/EXTHARD/NAS/ModelData/"
## Detection files
SP <- "Gg" # "Ssp"
acousticSegFile <- "/Volumes/EXTHARD/NAS/ALLSITES_segments_daily.csv" # acoustic input file
acousticDensityFile <-"/Volumes/EXTHARD/NAS/ALLSITES_binsize000800_Gg_density_jahStart.csv"# "E:/NASData/GC_DT_binsize000800_Group_density_Zc.csv" # acoustic input file
# The name of the acoustic density file with matched segments
acDensityFile <- paste0('ACDensity_Segments_',SP,'.Rdata')
visDataFile <- "/Volumes/EXTHARD/NAS/Sightings_merged.Rdata" # visual sightings
visSegmentsFile <- "/Volumes/EXTHARD/NAS/Visual_Segments_v2.csv" # visual segments
# Mapping data
surveyAreaFile <- "/Volumes/EXTHARD/NAS/AcoustoVisualDE/surveyAreaOutline.shp"
# To load this, use: surveyArea <- readShapeSpatial(surveyAreaFile)
## Species/Platform/model info
# Species Category (used for file naming)
# Species names
# Visual Codes
#SPC_vis <- c("Cuvier's beaked whale", "unid. Ziphiid")# "Gervais' beaked whale", "Beaked Whale","unid. Mesoplodont"
# SPC_vis <- c("Atlantic spotted dolphin", "Striped dolphin","Pantropical spotted dolphin",
# "Spinner dolphin","Stenella sp.","Clymene dolphin")
SPC_vis <- c("Risso's dolphin")
# Platform Codes (visual only)
PLC <- c("GU","OR")
# Calculate detection functions? This is slow, so if it's already done, you can load trunc dists from file
runDetFuns <- FALSE # can be true or false
# The name of the visual detection function file.
detFunFile <- paste0("Vis_TruncDist_",SP,"_only.Rdata")# #Vis_TruncDist_allBW.Rdata" # <- With spares data, you could produce a visual detection function using all beaked whales,
# then use that here, to only estimate habitat model for Ziphiid, for instance.
# If runDetFuns = TRUE, detFunFile is used to name the R output from the detection function calculation process.
# If runDetFuns = FALSE, detFunFile is used to retrieve the previously caclualated detection functions.
matchACSegs <- TRUE # set to true if you need to match density estimates with environmental parameters
visG0 <- mean(c(.42,.37)) #= dolphin #Beaked whale=.27 # from palka 2006 table 5, 2004 survey
############### Begin Calculations ################
graphics.off()
closeAllConnections()
## Load & Prune Acoustic data
cat("Loading acoustic data \n")
if (matchACSegs){
# Load acoustic segments and densities
acSegmentsAll <- read.csv(acousticSegFile, header = TRUE,na.strings=c(""," ","NA","-99999","-9999","NaN"))
acDensityAll <- read.csv(acousticDensityFile, header = TRUE,na.strings=c(""," ","NA","-99999","-9999","NaN"))
acSegmentsAll$XLSDATE = as.Date(acSegmentsAll$XLSDATE,"%m/%d/%Y %H:%M")
acDensityAll$xlsDate = as.Date(acDensityAll$xlsDate,"%m/%d/%Y %H:%M")#"%m/%d/%Y %H:%M"
nCol <- length(colnames(acDensityAll))
keepPoints <- which(acDensityAll$xlsDate >= "2011-01-01" & acDensityAll$xlsDate < "2014-01-01")
acDensityAll <- acDensityAll[keepPoints,]
# Match segments to density datapoints
covarNames = names(acSegmentsAll[5:length(names(acSegmentsAll))])
acDensityAll[,covarNames] <- NA
for (iR in 1:nrow(acDensityAll)){
# find all the segments with matching latitudes
goodLat <- which(acSegmentsAll$LAT %in% acDensityAll$Lat[iR])
densDate <- acDensityAll$xlsDate[iR]
bestMatch <- goodLat[which.min(abs(densDate-acSegmentsAll$XLSDATE[goodLat]))]
if (length(bestMatch)!=0){
rowMatch <- acSegmentsAll[bestMatch,5:(length(names(acSegmentsAll)))]
acDensityAll[iR,((nCol+1):(length(rowMatch)+nCol))] <- rowMatch
}else{
acDensityAll[iR,((nCol+1):(length(covarNames)+nCol))] <- NA
}
if (iR %% 1000 == 0){
cat(paste0("done with entry ", iR , " of ", nrow(acDensityAll), "\n", collapse = ""))
}
}
save(acDensityAll, file = acDensityFile)
}else {
load(acDensityFile)
}
# Exclude partial weeks, and extract the right density estimate type (cue or group)
#fullWeeks <- which(acSegmentsAll$PartialWeek == 0)
#acSegmentsFull <- acSegmentsAll#[fullWeeks,]
rm(acSegmentsAll)
###########################
## Load Visual data
cat("Loading visual data\n")
load(visDataFile)
visSegments <- read.csv(visSegmentsFile, header = TRUE,na.strings=c(""," ","NA","-99999.0000","-99999"))
visSegments$date <- as.Date(visSegments$date,"%m/%d/%Y")
## Process Visual data to determine detection probabilities and strip widths
visSpIdx <- NULL
for (spname in SPC_vis){
visSpIdx <- c(visSpIdx,which(grepl(spname, visData$commonname)))
}
# prune out off-effort sightings
spIdxON <- visSpIdx[which(as.logical(visData$effort[visSpIdx]))]
# prune out sightings with an angle over 90 deg
spIdxON2 <- spIdxON[which(visData$relbear[spIdxON]<90)]
# Populate truncated column of on effort sightings of species of interest with zeros
visData$Truncated <- 1
visData$Truncated[spIdxON2] <- 0
if (runDetFuns){
# for each visual platform
nPlatform <- 1 # Initialize to start with first platform
tDist <-NULL # store truncation distances
bestModel <-NULL # store best model covariates
bestKey <-NULL # store best model key
detFunByPlatform <- NULL
cat("Begin model fitting for visual data \n")
for (i in PLC){
ddfData <- NULL
cat(paste("Fitting platform ", i,"\n"))
# identify sightings assoicated with the a certain platform
PLCspIdxOn <- spIdxON2[which(grepl(i,visData$ship[spIdxON]))]
# Make dataframe with the inputs that the ddf distance function wants
ddfData$observer <- rep(1,length(PLCspIdxOn))
ddfData$detected <- rep(1,length(PLCspIdxOn))
ddfData$object <- (1:length(PLCspIdxOn))
ddfData$distance <- visData$transect_distm[PLCspIdxOn]
ddfData$size <- visData$size[PLCspIdxOn]
ddfData$seastate <- visData$seastate[PLCspIdxOn]
ddfData$swell <- visData$swell[PLCspIdxOn]
ddfData$vis <- visData$vis[PLCspIdxOn]
# Compute untruncated detection function
cat("Calculating basic fit with non-truncated data and half-normal key, no covariates.\n")
detFun_noTrunc <-ddf(method = 'ds', dsmodel =~ mcds(key = 'hn', formula = ~ 1),
data = as.data.frame(ddfData), meta.data = list(binned=F,left=0),
control = list(optimx.maxit = 20))
# detFun_noTrunc2 <-ds(as.data.frame(ddfData),key='hn')
# Make output plots
cat("Saving plots\n")
png(paste(outDir, SP,'sightnoTrunc_',i,'.png',sep=''), width = 800, height = 500)
par(mfrow=c(1,2))
plot(detFun_noTrunc)
qqplot.ddf(detFun_noTrunc,plot=TRUE)
dev.off()
# Compute truncation distance by removing highest 5% of distances
tDist[nPlatform] <- quantile(ddfData$distance,.95,na.rm = TRUE)
cat(paste("Truncation distance for platform ", i, "=", round(tDist[nPlatform],2), "m \n"))
# Iterate over detection functions with various adjustments and orders, and identify AIC for each
# list of key funs to try:
keyListInit = c( 'hn', 'hr', 'hr','unif')
adjInit = c('none','none','poly','none')
adjOrderInit = c( 0, 0, 2, 0)
detFun1 <- NULL
aicList1 <- NULL
keyList1 <- NULL
adjStr <- NULL
cat("Fitting detection functions with adjustments \n")
dI <- 1
for (i1 in 1:length(keyListInit)){
df <-NULL
if (grepl('none',adjInit[[i1]])){
df <- ddf(method ='ds', dsmodel =~ mcds(key = keyListInit[[i1]], formula = ~ 1),
data = as.data.frame(ddfData), meta.data = list(binned=F, width=tDist[nPlatform], left=0))
# df <- ds(as.data.frame(ddfData), truncation = tDist[nPlatform], order = NULL, transect = "line", key = keyListInit[[i1]],
# monotonicity = "weak")
} else {
df <-ddf(method ='ds', dsmodel =~ mcds(key = keyListInit[[i1]], formula = ~ 1,
adj.series = adjInit[[i1]], adj.order = adjOrderInit[[i1]]), data = as.data.frame(ddfData),
meta.data = list(binned=F, width=tDist[nPlatform],left=0))
# df <- ds(as.data.frame(ddfData), truncation = tDist[nPlatform], transect = "line", key = keyListInit[[i1]],
# adjustment = adjInit[i1], order = adjOrderInit[i1],
# monotonicity = "weak")
}
if (is.null(df)){
cat(paste0("Model did not converge: Key = ",iKey, "; key = ",keyList1[iI],"\n", collapse = ""))
}else {
detFun1[[dI]] <-df
aicList1[dI] <- df$criterion
keyList1[dI] <- keyListInit[i1]
adjStr[dI] <- paste(adjInit[i1],adjOrderInit[i1])
cat(paste0("Model result ", i1,"; Key = ",keyList1[i1],
"; Adjustment = ",adjInit[i1], "; Order = ",adjOrderInit[i1],"\n", collapse = ""))
cat(paste0("AIC = ", round(aicList1[i1], digits=2),"\n", collapse = ""))
dI <- dI+1
}
}
cat("Done fitting models")
# Put all combinations together, and see which one has the lowest AIC
aicList<-c(aicList1)#,aicList2) (commented out part associated with covariate-models)
keyList <- c(keyList1)#,keyList2)
adjList <- c(adjStr)#,cSetStr)
detFun <- c(detFun1)#,detFun2)
ddfOut <- data.frame(model = adjList, key = keyList, aic = aicList)
# Best model is...
bestModelIdx <- which(ddfOut$aic == min(ddfOut$aic, na.rm = TRUE), arr.ind = TRUE)
bestModel[[nPlatform]] <- adjList[bestModelIdx]
bestKey[[nPlatform]] <- keyList[bestModelIdx]
cat(paste("Best model for Platform ", i,":\n"))
cat(paste("Key = ", bestKey[[nPlatform]], "; Adjustment =", bestModel[[nPlatform]],"\n"))
# Make output plot of best model
cat("Saving plots and summaries \n")
png(paste(outDir, SP,'sightwTrunc_',i,'.png',sep=''), width = 800, height = 500,pointsize = 16)
par(mfrow=c(1,2))
plot(detFun[[bestModelIdx]], main = paste('model = ',bestModel[[nPlatform]], '; key = ', bestKey[[nPlatform]]))
qqplot.ddf(detFun[[bestModelIdx]],plot=TRUE)
dev.off()
# Output summary text to txt file
sink(paste(outDir, SP,'sightwTrunc_',i,'.txt',sep=''))
print(summary(detFun[[bestModelIdx]]))
print(ddf.gof(detFun[[bestModelIdx]]))
sink()
## save best model
save(detFun, bestModelIdx, file = paste(SP,'sightwTrunc_',i,'.Rdata',sep=''))
detFunByPlatform[[nPlatform]] <- detFun[[bestModelIdx]]
nPlatform <- nPlatform + 1
cat(paste("Done fitting models for platform ", i,"\n"))
}
cat("Done fitting models \n")
save(tDist, detFunByPlatform, file = detFunFile)
} else{
load(detFunFile)
}
##
# Put effective strip widths calculated above into Segments table
visSegments["ESW"] <- 0
for (iP in 1:length(PLC)){
thisSegList <-which(visSegments$ship==PLC[iP])
visSegments$ESW[thisSegList] <- predict(detFunByPlatform[[iP]],esw=TRUE)$fitted[1]
}
# get rid of off effort segments
visSeg_OnEffort <- visSegments[visSegments$effort==1,]
# Tally encounters by segment
prunedSightings <- visData[visData$Truncated==0,] # get all of the non-truncated sightings
# match assign segment to each sighting
for (iSight in 1:length(prunedSightings$date)){
sightDate <- prunedSightings$date[iSight]
onThisDay <- which(visSeg_OnEffort$date == sightDate)
if (length(onThisDay)>0) {
minIdx <- which.min(abs(visSeg_OnEffort$transect[onThisDay]-prunedSightings$transect[iSight]))
prunedSightings$Segment[iSight] <-onThisDay[minIdx]
}else { # handle case where there is no match (why would this happen?)
cat(paste("Warning: Missing effort segment for sighting on", sightDate,"\n"))
prunedSightings$Segment[iSight] <- NaN
}
}
segTally <- as.data.frame(table(prunedSightings$Segment)) # this gives you a list of segments containing sightings
#adjust encounters for G0
# for (i in PLC){
# thisSet <- which(visSeg_OnEffort$ship = i)
# visSeg_OnEffort$SpEncounter_G0adj[thisSet] <- visSeg_OnEffort$sp_count[thisSet]
# }
cat("Associating sightings with transect segments\n")
# put that info into the segments table
visSeg_OnEffort$sp_count <- 0 # will hold number of animals
visSeg_OnEffort$sp_present <- 0 # will hold 1/0 for presence absence
# for each segment that had a sighting
for (iSeg in segTally[,1]){
# determine the row number of all sighting rows matching this segment number
segIdx <- which(prunedSightings$Segment == iSeg)
SegObjID_Idx <- which(visSeg_OnEffort$OBJECTID == iSeg)
if (length(SegObjID_Idx)>0){
visSeg_OnEffort$sp_count[SegObjID_Idx] <- sum(prunedSightings$size[segIdx])
if (visSeg_OnEffort$sp_count[SegObjID_Idx] >0) {# this should always be true...
visSeg_OnEffort$sp_present[SegObjID_Idx] <- 1
}
}
}
# account for G0 in encounters
visSeg_OnEffort$sp_count_g0adj <- visSeg_OnEffort$sp_count/visG0
# Estimate surveyed area
visSeg_OnEffort$EffectiveArea <- (2*visSeg_OnEffort$ESW/1000)*(visSeg_OnEffort$SegmentLength/1000)
visSeg_OnEffort$Density <- visSeg_OnEffort$sp_count_g0adj/visSeg_OnEffort$EffectiveArea
###################################
## Visual and Acoustic
AcOnlySegments <- NULL
yearListTemp <- as.numeric(format(acDensityAll$xlsDate,"%Y"))
siteYear <- NULL
nAc <- length(acDensityAll$HYCOM_MAG_100)
siteYear$Year <-yearListTemp
siteYear$Site <-acDensityAll$Site
siteYear <- as.data.frame(siteYear)
uSiteYear <- unique((siteYear))
AcOnlySegments$Density <- rep(NA,times = nAc)
for (uR in 1:nrow(uSiteYear)){
# Normalize acoustic density estimated by deployment
thisSet <- which(as.logical(row.match(siteYear,uSiteYear[uR,])))
thisSet_gt0 <- which(acDensityAll$meanDensity[thisSet]>0)
quant95 <-quantile(acDensityAll$meanDensity[thisSet[thisSet_gt0]],probs = .95,na.rm = TRUE)
AcOnlySegments$Density[thisSet] <- acDensityAll$meanDensity[thisSet]/quant95
}
AcOnlySegments$date <- as.Date(acDensityAll$xlsDate,"%m/%d/%Y") #date
AcOnlySegments$lat <- acDensityAll$Lat
AcOnlySegments$long <- acDensityAll$Long
AcOnlySegments$Category<- rep(2,length(acDensityAll$Long))
AcOnlySegments$SST <- acDensityAll$SST_DAILY_CMC.L4
AcOnlySegments$SSH <- acDensityAll$SSH_DAILY_AVISO
AcOnlySegments$CHL <- acDensityAll$CHL_8DAY_NASA
AcOnlySegments$HYCOM_QTOT <- acDensityAll$HYCOM_QTOT
AcOnlySegments$HYCOM_MLD <- acDensityAll$HYCOM_MLD
AcOnlySegments$HYCOM_EMP <- acDensityAll$HYCOM_EMP
AcOnlySegments$HYCOM_DIR_0 <- acDensityAll$HYCOM_DIR_0
AcOnlySegments$HYCOM_DIR_100 <- acDensityAll$HYCOM_DIR_100
AcOnlySegments$HYCOM_SALIN_0 <- acDensityAll$HYCOM_SALINITY_0
AcOnlySegments$HYCOM_SALIN_100 <- acDensityAll$HYCOM_SALIN_100
AcOnlySegments$HYCOM_MAG_0 <- acDensityAll$HYCOM_MAG_0
AcOnlySegments$HYCOM_MAG_100 <- acDensityAll$HYCOM_MAG_100
AcOnlySegments$HYCOM_UPVEL_100 <- acDensityAll$HYCOM_UPVEL_100
AcOnlySegments$HYCOM_UPVEL_50 <- acDensityAll$HYCOM_UPVEL_50
AcOnlySegments$FrontDist_Cayula <- acDensityAll$FRONTDIST_CAYULA
AcOnlySegments$EddyDist <- acDensityAll$EDDYDIST
AcOnlySegments$Neg_EddyDist <- acDensityAll$NEG_EDDYDIST
AcOnlySegments$Type <- rep(2,times = nAc)
AcOnlySegments$DayOfYear <- as.numeric(strftime(acDensityAll$xlsDate,"%j")) # day of year
VisOnlySegments <- NULL
VisOnlySegments$date <- as.Date(visSeg_OnEffort$date_Converted,"%m/%d/%Y") #date
VisOnlySegments$lat <- visSeg_OnEffort$Lat
VisOnlySegments$long <- visSeg_OnEffort$Long
VisOnlySegments$Category<- rep(1,length(visSeg_OnEffort$Long))
# mergedSegments$ESW <- c(acDensityAll$BW_ESW)
VisOnlySegments$Density <- visSeg_OnEffort$Density/
quantile(visSeg_OnEffort$Density[which(visSeg_OnEffort$Density>0)],probs = .95,na.rm = TRUE)
VisOnlySegments$SST <- visSeg_OnEffort$SST_daily_CMC_L4_GLOB
VisOnlySegments$SSH <- visSeg_OnEffort$SSH_daily_aviso_double
VisOnlySegments$CHL <- visSeg_OnEffort$CHl_8Day_NASA
VisOnlySegments$HYCOM_QTOT <- visSeg_OnEffort$HYCOM_qTot
VisOnlySegments$HYCOM_MLD <- visSeg_OnEffort$HYCOM_mld
VisOnlySegments$HYCOM_EMP <- visSeg_OnEffort$HYCOM_emp
VisOnlySegments$HYCOM_DIR_0 <- visSeg_OnEffort$HYCOM_dir_0
VisOnlySegments$HYCOM_DIR_100 <- visSeg_OnEffort$HYCOM_dir_100
VisOnlySegments$HYCOM_SALIN_0 <- visSeg_OnEffort$HYCOM_salinity_0
VisOnlySegments$HYCOM_SALIN_100 <- visSeg_OnEffort$HYCOM_salin_100
VisOnlySegments$HYCOM_MAG_0 <- visSeg_OnEffort$HYCOM_mag_0
VisOnlySegments$HYCOM_MAG_100 <- visSeg_OnEffort$HYCOM_mag_100
VisOnlySegments$HYCOM_UPVEL_100 <- visSeg_OnEffort$HYCOM_upVel_100
VisOnlySegments$HYCOM_UPVEL_50 <- visSeg_OnEffort$HYCOM_UPVEL_50
VisOnlySegments$FrontDist_Cayula <- visSeg_OnEffort$FrontDist_Cayula
VisOnlySegments$EddyDist <- visSeg_OnEffort$EddyDist
VisOnlySegments$Neg_EddyDist <- visSeg_OnEffort$EddyDist
nVis <- length(visSeg_OnEffort$HYCOM_upVel_100)
VisOnlySegments$Type <- rep(1,times = nVis)
VisOnlySegments$DayOfYear <- as.numeric(strftime(VisOnlySegments$date,"%j")) # day of year
cat("Merging Visual and Acoustic Segments\n")
# Merge visual and acoustic segments into one big dataframe
mergedSegments <- NULL
mergedSegments$date <- c(as.Date(visSeg_OnEffort$date_Converted,"%m/%d/%Y"),as.Date(acDensityAll$xlsDate,"%m/%d/%Y")) #date
mergedSegments$lat <- c(visSeg_OnEffort$Lat,acDensityAll$Lat)
mergedSegments$long <- c(visSeg_OnEffort$Long,acDensityAll$Long)
mergedSegments$Category<- c(rep(1,length(visSeg_OnEffort$Long)),rep(2,length(acDensityAll$Long)))
# mergedSegments$ESW <- c(acDensityAll$BW_ESW)
mergedSegments$Density <- c(VisOnlySegments$Density,
AcOnlySegments$Density)
mergedSegments$SST <- c(visSeg_OnEffort$SST_daily_CMC_L4_GLOB,acDensityAll$SST_DAILY_CMC.L4)
mergedSegments$SSH <- c(visSeg_OnEffort$SSH_daily_aviso_double,acDensityAll$SSH_DAILY_AVISO)
mergedSegments$CHL <- c(visSeg_OnEffort$CHl_8Day_NASA, acDensityAll$CHL_8DAY_NASA)
mergedSegments$HYCOM_QTOT <- c(visSeg_OnEffort$HYCOM_qTot, acDensityAll$HYCOM_QTOT)
mergedSegments$HYCOM_MLD <- c(visSeg_OnEffort$HYCOM_mld, acDensityAll$HYCOM_MLD)
mergedSegments$HYCOM_EMP <- c(visSeg_OnEffort$HYCOM_emp, acDensityAll$HYCOM_EMP)
mergedSegments$HYCOM_DIR_0 <- c(visSeg_OnEffort$HYCOM_dir_0,acDensityAll$HYCOM_DIR_0)
mergedSegments$HYCOM_DIR_100 <- c(visSeg_OnEffort$HYCOM_dir_100,acDensityAll$HYCOM_DIR_100)
mergedSegments$HYCOM_SALIN_0 <- c(visSeg_OnEffort$HYCOM_salinity_0,acDensityAll$HYCOM_SALINITY_0)
mergedSegments$HYCOM_SALIN_100 <- c(visSeg_OnEffort$HYCOM_salin_100,acDensityAll$HYCOM_SALIN_100)
mergedSegments$HYCOM_MAG_0 <- c(visSeg_OnEffort$HYCOM_mag_0,acDensityAll$HYCOM_MAG_0)
mergedSegments$HYCOM_MAG_100 <- c(visSeg_OnEffort$HYCOM_mag_100,acDensityAll$HYCOM_MAG_100)
mergedSegments$HYCOM_UPVEL_100 <- c(visSeg_OnEffort$HYCOM_upVel_100,acDensityAll$HYCOM_UPVEL_100)
mergedSegments$HYCOM_UPVEL_50 <- c(visSeg_OnEffort$HYCOM_UPVEL_50,acDensityAll$HYCOM_UPVEL_50)
mergedSegments$FrontDist_Cayula <- c(visSeg_OnEffort$FrontDist_Cayula,acDensityAll$FRONTDIST_CAYULA)
mergedSegments$EddyDist <- c(visSeg_OnEffort$EddyDist,acDensityAll$EDDYDIST)
mergedSegments$Neg_EddyDist <- c(rep(0,length(visSeg_OnEffort$EddyDist)),acDensityAll$NEG_EDDYDIST)
mergedSegments$Type <- c(rep(1,times = nVis),rep(2,times = nAc))
mergedSegments$DayOfYear <- as.numeric(strftime(mergedSegments$date,"%j")) # day of year
mergedSegments <- as.data.frame(mergedSegments)
AcOnlySegments <- as.data.frame(AcOnlySegments)
VisOnlySegments <- as.data.frame(VisOnlySegments)
covarList<-names(mergedSegments[c(2,5:length(mergedSegments))])
#covarList<- c("Bathymetry","SST_daily","CHl_8Day","HYCOM_dir_daily","HYCOM_mag_daily","HYCOM_wVel_daily",
# "SSH_daily","CHL_daily","TKE_surfaceCurrent_5day","HYCOM_mld_daily")
###################################
# Oceanographic variables
# Explore the data, graphical output
cat("Begin exploratory plot generation\n")
# histograms of missing data
percFilled <- plot.missingdata(mergedSegments,covarList,paste0('AcousticAndVisual_',SP))
percFilled <- plot.missingdata(AcOnlySegments,covarList,paste0('AcousticOnly_',SP))
percFilled <- plot.missingdata(VisOnlySegments,covarList,paste0('VisualOnly_',SP))
# Identify and clear problematic outliers
outlierList <-which(mergedSegments$CHL< -10)
mergedSegments$CHL[outlierList] <- NaN
outlierList <-which(mergedSegments$FrontDist_Cayula>800000)
mergedSegments$FrontDist_Cayula[outlierList] <- NaN
outlierList <-which(mergedSegments$Density>10)
mergedSegments$Density[outlierList] <- NaN
outlierList <-which(AcOnlySegments$CHL< -10)
AcOnlySegments$CHL[outlierList] <- NaN
outlierList <-which(AcOnlySegments$FrontDist_Cayula>800000)
AcOnlySegments$FrontDist_Cayula[outlierList] <- NaN
outlierList <-which(AcOnlySegments$Density>10)
AcOnlySegments$Density[outlierList] <- NaN
outlierList <-which(VisOnlySegments$CHL< -10)
VisOnlySegments$CHL[outlierList] <- NaN
outlierList <-which(VisOnlySegments$FrontDist_Cayula>800000)
VisOnlySegments$FrontDist_Cayula[outlierList] <- NaN
outlierList <-which(VisOnlySegments$Density>10)
VisOnlySegments$Density[outlierList] <- NaN
# If you decide from the missing data plots that you want to restrict years going forward:
yearListIdx = as.numeric(format(mergedSegments$date,"%Y"))
yearListIdx_AcOnly = as.numeric(format(AcOnlySegments$date,"%Y"))
yearListIdx_VisOnly = as.numeric(format(VisOnlySegments$date,"%Y"))
keepDates.train <- which(yearListIdx != 2009 & yearListIdx >= 2003 & yearListIdx <= 2012)
keepDates.test <- which(yearListIdx == 2009 | yearListIdx == 2013)
keepDates_AcOnly.train <- which(yearListIdx_AcOnly != 2009 & yearListIdx_AcOnly >= 2003 & yearListIdx_AcOnly <= 2012)
keepDates_AcOnly.test <- which(yearListIdx_AcOnly == 2009 | yearListIdx_AcOnly == 2013)
keepDatesVisOnly.train <- which(yearListIdx_VisOnly != 2009 & yearListIdx_VisOnly >= 2003 & yearListIdx_VisOnly <= 2012)
keepDatesVisOnly.test <- which(yearListIdx_VisOnly == 2009 | yearListIdx_VisOnly == 2013)
mergedTrain.set<- mergedSegments[keepDates.train,]
Train_AcOnly.set<- AcOnlySegments[keepDates_AcOnly.train,]
Train_VisOnly.set<- VisOnlySegments[keepDatesVisOnly.train,]
mergedTest.set<- mergedSegments[keepDates.test,]
Test_AcOnly.set<- AcOnlySegments[keepDates_AcOnly.test,]
Test_VisOnly.set<- VisOnlySegments[keepDatesVisOnly.test,]
# Cleveland dot plots:
# no transforms
plot.cleveland(mergedTrain.set,covarList,FALSE,paste0('AcousticAndVisual_',SP))
plot.cleveland(Train_AcOnly.set,covarList,FALSE,paste0('AcousticOnly_',SP))
plot.cleveland(Train_VisOnly.set,covarList,FALSE,paste0('VisualOnly_',SP))
# with transformations
# decided to exclude CHL8day (bad distribution), TKE surface current(outliers, plus redundant),
# SST Monthly climate (Looks the same as 8day climate), SSH Monthly climate (same as 8 day climate),
# bathymetry (not normally distributed for fixed sites)
# covarList2 <- c("Density","SST","SSH")
# transformList <- c("none","none","none")
covarList2 <- c("SST","SSH","CHL","HYCOM_MLD",
"HYCOM_SALIN_100","HYCOM_DIR_0",
"HYCOM_MAG_100",
"HYCOM_UPVEL_50","FrontDist_Cayula","EddyDist","Neg_EddyDist","DayOfYear")
transformList <- c("none","none","log10","log10",
"none","none",
"log10",
"none","log10","none","none","none")
# restrict covariates again to limited set
mergedTrain.set2<- mergedTrain.set[,covarList2]
mergedTest.set2<- mergedTest.set[,covarList2]
Train_AcOnly.set2<- Train_AcOnly.set[,covarList2]
Test_AcOnly.set2<- Test_AcOnly.set[,covarList2]
Train_VisOnly.set2<- Train_VisOnly.set[,covarList2]
Test_VisOnly.set2<- Test_VisOnly.set[,covarList2]
transformedCovars.train <- transform.covars(mergedTrain.set2,covarList2,transformList)
transformedCovars.test <- transform.covars(mergedTest.set2,covarList2,transformList)
transformedCovars_AcOnly.train <- transform.covars(Train_AcOnly.set2,covarList2,transformList)
transformedCovars_AcOnly.test <- transform.covars(Test_AcOnly.set2,covarList2,transformList)
transformedCovars_VisOnly.train <- transform.covars(Train_VisOnly.set2,covarList2,transformList)
transformedCovars_VisOnly.test <- transform.covars(Test_VisOnly.set2,covarList2,transformList)
plot.cleveland(transformedCovars.train,colnames(transformedCovars.train),TRUE,paste0('AcousticAndVisual_',SP))
plot.cleveland(transformedCovars_AcOnly.train,colnames(transformedCovars.train),TRUE,paste0('AcousticOnly_',SP))
plot.cleveland(transformedCovars_VisOnly.train,colnames(transformedCovars.train),TRUE,paste0('VisualOnly_',SP))
# presence absence histograms
plot.covarDensity(transformedCovars.train,colnames(transformedCovars.train),mergedTrain.set$Density,paste0('AcousticAndVisual_',SP))
plot.covarDensity(transformedCovars_AcOnly.train,colnames(transformedCovars_AcOnly.train),Train_AcOnly.set$Density,paste0('AcousticOnly_',SP))
plot.covarDensity(transformedCovars_VisOnly.train,colnames(transformedCovars_VisOnly.train),Train_VisOnly.set$Density,paste0('VisualOnly_',SP))
# correlation
# without transform
png(paste(outDir,SP,'_correlations_noTransform.png',sep=''), width = 2000, height = 1600)
pairs.panels(mergedTrain.set2, ellipses=FALSE, method = "spearman",cex.cor=.75)
dev.off()
png(paste(outDir,SP,'_correlations_noTransform_AcOnly.png',sep=''), width = 2000, height = 1600)
pairs.panels(Train_AcOnly.set2, ellipses=FALSE, method = "spearman",cex.cor=.75)
dev.off()
png(paste(outDir,SP,'_correlations_noTransform_visOnly.png',sep=''), width = 2000, height = 1600)
pairs.panels(Train_VisOnly.set2, ellipses=FALSE, method = "spearman",cex.cor=.75)
dev.off()
# with transform
png(paste(outDir,SP,'_correlations_withTransform.png',sep=''), width = 2000, height = 1600)
pairs.panels(transformedCovars.train, ellipses=FALSE, method = "spearman",cex.cor=.75)
dev.off()
png(paste(outDir,SP,'_correlations_withTransform_AcOnly.png',sep=''), width = 2000, height = 1600)
pairs.panels(transformedCovars_AcOnly.train, ellipses=FALSE, method = "spearman",cex.cor=.75)
dev.off()
png(paste(outDir,SP,'_correlations_withTransform_visOnly.png',sep=''), width = 2000, height = 1600)
pairs.panels(transformedCovars_VisOnly.train, ellipses=FALSE, method = "spearman",cex.cor=.75)
dev.off()
cat("Exploratory plots done\n")
###########################
# Run & evaluate models
# # Presence absence
# yBinomial <- mergedTrain.set$SpPresent
#
# cat("Run full GAM on presence absence data with shrinkage\n")
#
# presAbsGAMAll <- gam(yBinomial ~ s(SST_daily, bs="ts",k=5) + s(SSH_daily,bs="ts",k=5)
# +s(log10_CHL_daily_climate,bs="ts",k=5) + s(log10_HYCOM_mld_daily,bs="ts",k=5)
# +s(HYCOM_northVel_daily,bs="ts",k=5) + s(HYCOM_eastVel_daily,bs="ts",k=5)
# +s(HYCOM_wVel_daily,k=5) + s(EddyDist, bs ="ts",k=5)
# +s(log10_Dist_to_Front, bs="ts",k=5)+ s(HYCOM_dir_daily,bs="ts",k=5) ,
# method = "GCV.Cp", data = transformedCovars.train, family = binomial(),
# offset = log(mergedTrain.set$EffectiveArea),na.action = na.omit)#
#
# # Save summary to text file
# sink(paste(outDir,SP,'_GAM_presence_full.txt'))
# summary(presAbsGAMAll)
# gam.check(presAbsGAMAll)
# sink()
#
# # Calculate and save residuals to text file
# rsd <-residuals.gam(presAbsGAMAll)
# png(paste(outDir,SP,'_residuals_presence_full.png',sep=''), width = 1000, height = 800)
# plot(rsd)
# dev.off()
# Density
kVal <- 8
# Make vector indicating deployment categories based on lat/long
myLatLon = Train_AcOnly.set[c(3,4)]
uLatLon <- unique(floor(myLatLon))
nRows <- length(Train_AcOnly.set[3])
fac1 <- rep(NA,times = nRows)
for (uR in 1:nrow(uLatLon)){
thisSet <- which(as.logical(row.match(myLatLon,uLatLon[uR,])))
fac1[thisSet] <-uR
}
yAcOnly <- (Train_AcOnly.set$Density)
# myts_AcOnly = ts(Train_AcOnly.set$Density[which(Train_AcOnly.set$lat == 28.84625)],start = 1, frequency = 1)
# tsdiag(arima(myts_AcOnly))
cat("Run full GAM on Acoustic only data with shrinkage\n") #correlation = corAR1(form=~1|mergedTrain.set$Category)
gam_full_AcOnly <- gam(yAcOnly~ s(SST, bs="ts",k=kVal) + s(SSH, bs="ts",k=kVal)
+ s(Neg_EddyDist, bs="ts",k=kVal)
+ s(log10_FrontDist_Cayula, bs="ts",k=kVal)
+ s(DayOfYear,bs='cp',k=kVal)
+ s(HYCOM_SALIN_100,bs = "ts",k=kVal)
+ s(log10_HYCOM_MAG_100, bs="ts",k=kVal),
data = transformedCovars_AcOnly.train,
na.action = na.omit,family=tw())#
gamm_full_AcOnly <- gamm(yAcOnly~ s(SST, bs="ts", k=kVal)
+ s(SSH, bs="ts", k=kVal)
+ s(log10_FrontDist_Cayula, bs="ts", k=kVal)
+ s(Neg_EddyDist, bs="ts", k=kVal)
+ s(DayOfYear, bs="cp", k=kVal)
+ s(log10_HYCOM_MAG_100,bs="ts", k=kVal)
+ s(HYCOM_SALIN_100, bs="ts", k=kVal),
data = transformedCovars_AcOnly.train,
na.action = na.omit,family = Tweedie(p=1.4),
correlation = corAR1(form=~1|fac1))#
# sink(paste(outDir,SP,'_GAM_full_AcOnly.txt'))
summary(gamm_full_AcOnly$gam)
# gam.check(gam_full_AcOnly)
# sink()
# Predict on test data at MC, for comparison...
compAcSet <- which(ceiling(Test_AcOnly.set$long)==-88)
pred <- predict.gam(gamm_full_AcOnly$gam,transformedCovars_AcOnly.test[compAcSet,], type='response',na.action = na.omit)
plot(Test_AcOnly.set$date[compAcSet],pred,ylim=c(0,.2))
lines(Test_AcOnly.set$date[compAcSet],Test_AcOnly.set$Density[compAcSet]/5, type="b", col="red")
compAcSet <- which(ceiling(Train_AcOnly.set$long)==-84)
pred <- predict.gam(gamm_full_AcOnly,transformedCovars_AcOnly.train[compAcSet,], type='response',na.action = na.omit)
plot(Train_AcOnly.set$date[compAcSet],pred,ylim=c(0,.085))
plot(Train_AcOnly.set$date[compAcSet],Train_AcOnly.set$Density[compAcSet]/20, type="b", col="red")
# # Calculate and save residuals to text file
# rsd <-residuals.gam(gam_full_AcOnly)
# png(paste(outDir,SP,'_residuals_density_AcOnly_Full.png', sep=''), width = 1000, height = 800)
# plot(rsd)
# dev.off()
yAcOnly_TF <- as.logical(Train_AcOnly.set$Density>0)
# myts_AcOnly = ts(Train_AcOnly.set$Density[which(Train_AcOnly.set$lat == 28.84625)],start = 1, frequency = 1)
# tsdiag(arima(myts_AcOnly))
cat("Run full binomial GAM on Acoustic only data with shrinkage\n")#random = list(fac1=~1),
gam_full_AcOnly_TF <- gamm(yAcOnly_TF~ s(SST, bs="ts", k=kVal)
+ s(SSH, bs="ts", k=kVal)
+ s(log10_FrontDist_Cayula, bs="ts", k=kVal)
+ s(Neg_EddyDist, bs="ts", k=kVal)
+ s(DayOfYear, bs="cp", k=kVal)
+ s(log10_HYCOM_MAG_100,bs="ts", k=kVal)
+ s(HYCOM_SALIN_100, bs="ts", k=kVal),
data = transformedCovars_AcOnly.train,
na.action = na.omit,family = quasibinomial(),
correlation = corAR1(form=~1|fac1))#
sink(paste(outDir,SP,'_GAM_full_AcOnly_binomial.txt'))
summary(gam_full_AcOnly_TF$gam)
vis.gam(gam_full_AcOnly_TF$gam)
sink()
# Predict on test data at MC, for comparison...
compAcSet <- which(ceiling(Test_AcOnly.set$long)==-84)
pred <- predict.gam(gam_full_AcOnly_TF$gam,transformedCovars_AcOnly.test[compAcSet,], type = 'response',na.action = na.omit)
plot(Test_AcOnly.set$date[compAcSet],pred)
lines(Test_AcOnly.set$date[compAcSet],Test_AcOnly.set$Density[compAcSet]/5, type="b", col="red")
# plot(gam_full_AcOnly_TF,ylim = c(-2,2),pages = 1)
# # Calculate and save residuals to text file
# rsd <-residuals.gam(gam_full_AcOnly_TF)
# png(paste(outDir,SP,'_residuals_binom_AcOnly_Full.png',sep=''), width = 1000, height = 800)
# plot(rsd)
# dev.off()
#
# plot(gam_full_AcOnly_TF,pages = 2)
#
# yVisOnly <- (Train_VisOnly.set$Density)
# plot(yVisOnly)
# cat("Run full GAM on Visual only data with shrinkage\n")#correlation = corAR1(form=~1|mergedTrain.set$Category)
# gam_full_VisOnly <- gam(yVisOnly~ s(SST, bs="ts",k=kVal)+ s(SSH, bs="ts",k=kVal)+ s(log10_CHL, bs="ts",k=kVal)
# + s(log10_HYCOM_MLD, bs="ts",k=kVal)+ s(HYCOM_SALIN_0, bs="ts",k=kVal)
# + s(log10_HYCOM_MAG_0, bs="ts",k=kVal)+ s(HYCOM_UPVEL_50, bs="ts",k=kVal)
# + s(log10_FrontDist_Cayula, bs="ts",k=kVal)+ s(EddyDist, bs="ts",k=kVal),
# data = transformedCovars_VisOnly.train, method = "GCV.Cp",
# na.action = na.omit,family=tw())#
#
# sink(paste(outDir,SP,'_GAM_full_VisOnly.txt'))
# summary(gam_full_VisOnly)
# gam.check(gam_full_VisOnly)
# sink()
#
# yVisOnly_TF <- (Train_VisOnly.set$Density>0)
# plot(yVisOnly_TF)
kVal<-8
# cat("Run full binomial GAM on Visual only data with shrinkage\n")#correlation = corAR1(form=~1|mergedTrain.set$Category)
# gam_full_VisOnly_TF <- gam(yVisOnly_TF~ s(SST, bs="ts",k=kVal)+ s(SSH, bs="ts",k=kVal)+ s(log10_CHL, bs="ts",k=kVal)
# + s(HYCOM_SALIN_0, bs="ts",k=kVal)
# + s(log10_HYCOM_MAG_0, bs="ts",k=kVal)
# + s(log10_FrontDist_Cayula, bs="ts",k=kVal)+ s(EddyDist, bs="ts",k=kVal),
# data = transformedCovars_VisOnly.train, method = "GCV.Cp",
# na.action = na.omit,family=binomial(),control = list(keepData=TRUE))#
# model <- gam_full_VisOnly_TF
# coordinateSystem <- "GEOGCS['GCS_North_American_1983',DATUM['D_North_American_1983',SPHEROID[' GRS_1980',6378137.0,298.257222101]],PRIMEM['Greenwich',0.0],UNIT['Degree',0.0174532925199433]]"
# modelMetadata <- GetModelMetadata(terms(model), "mgcv", transformedCovars_VisOnly.train, NULL, yVisOnly_TF, NULL, NULL, coordinateSystem, model)
# save(model, modelMetadata, file = paste(outDir,SP,'_GAM_VisOnly_TF_pruned.Rdata',sep=''))
#
#
# sink(paste(outDir,SP,'_GAM_full_VisOnly_binomial.txt'))
# summary(gam_full_VisOnly_TF)
# gam.check(gam_full_VisOnly_TF)
# sink()
# plot(gam_full_VisOnly_TF,ylim = c(-5,5),pages = 1)
yTF <- (mergedTrain.set$Density>0)
# plot(yTF)
cat("Run full TF GAMM on density data with shrinkage\n")#correlation = corAR1(form=~1|mergedTrain.set$Category)
myCat <- as.factor(mergedTrain.set$Category)
myWeights <- rep(1,times = length(myCat))
AcTrainSize <- length(which(myCat==2))
VisTrainSize <- length(which(myCat==1))
myWeights[which(myCat==2)] <- VisTrainSize/AcTrainSize
Sub = transformedCovars.train
encounterAll_gamm_TF <- gamm(yTF ~ s(SST, bs="ts",k=kVal)+ s(SSH, bs="ts",k=kVal)+ s(log10_CHL, bs="ts",k=kVal)
+ s(HYCOM_SALIN_0, bs="ts",k=kVal)
+ s(log10_HYCOM_MAG_0, bs="ts",k=kVal)
+ s(log10_FrontDist_Cayula, bs="ts",k=kVal)+ s(EddyDist, bs="ts",k=kVal),
data = transformedCovars.train, random=list(myCat=~1),weights = myWeights, method = "GCV.Cp",
na.action = na.omit,family=binomial(),control = list(keepData=TRUE,maxIter=50))#,family= Tweedie(p=1.4)
# sink(paste(outDir,SP,'_GAMM_full_TF.txt'))
# summary(encounterAll_gamm_TF$gam)
# gam.check(encounterAll_gamm_TF$gam)
# sink()
# # Calculate and save residuals to text file
# rsd <-residuals.gam(encounterAll_gamm_TF$gam)
# model <- encounterAll_gamm_TF$gam
# coordinateSystem <- "GEOGCS['GCS_North_American_1983',DATUM['D_North_American_1983',SPHEROID[' GRS_1980',6378137.0,298.257222101]],PRIMEM['Greenwich',0.0],UNIT['Degree',0.0174532925199433]]"
# modelMetadata <- GetModelMetadata(terms(model), "mgcv", transformedCovars.train, NULL, yTF, NULL, NULL, coordinateSystem, model)
# save(model, modelMetadata, file = paste(outDir,SP,'_GAMM_TF_pruned.Rdata',sep=''))
#
#
# y <- (mergedTrain.set$Density)
# encounterAll_gamm <- gamm(y~ s(SST, bs="ts",k=5)+ s(SSH, bs="ts",k=5)+ s(log10_CHL, bs="ts",k=5)
# + s(log10_HYCOM_MLD, bs="ts",k=5)+ + s(HYCOM_DIR_0, bs="cc",k=5) + s(HYCOM_SALIN_0, bs="ts",k=5)
# + s(log10_HYCOM_MAG_0, bs="ts",k=5)+ s(HYCOM_UPVEL_100, bs="ts",k=5),
# data = transformedCovars.train, random=list(myCat=~1),weights = myWeights,method = "GCV.Cp",
# na.action = na.omit,family= Tweedie(p=1.2))#
#
# sink(paste(outDir,SP,'_GAMM_full.txt'))
# summary(encounterAll_gamm$gam)
# gam.check(encounterAll_gamm$gam)
# sink()
# # Calculate and save residuals to text file
# rsd <-residuals.gam(encounterAll_gamm$gam)
# encounterAll_gam_TF <- gam(yTF~ s(SST, bs="ts",k=kVal)+ s(SSH, bs="ts",k=kVal)+ s(log10_CHL, bs="ts",k=kVal)
# + s(log10_HYCOM_MLD, bs="ts",k=kVal)+ s(HYCOM_SALIN_0, bs="ts",k=kVal)
# + s(log10_HYCOM_MAG_0, bs="ts",k=kVal)+ s(HYCOM_UPVEL_50, bs="ts",k=kVal)
# + s(log10_FrontDist_Cayula, bs="ts",k=kVal)+ s(EddyDist, bs="ts",k=kVal),
# data =transformedCovars.train, method = "GCV.Cp",na.action = na.omit,family=binomial(), weights = myWeights,
# control = list(keepData=TRUE))#
#
# sink(paste(outDir,SP,'_GAM_full_TF.txt'))
# summary(encounterAll_gam_TF)
# gam.check(encounterAll_gam_TF)
# sink()
#
#
# encounterAll_gam <- gam(y~ s(SST, bs="ts",k=kVal)+ s(SSH, bs="ts",k=kVal)+ s(log10_CHL, bs="ts",k=kVal)
# + s(log10_HYCOM_MLD, bs="ts",k=kVal)+ s(HYCOM_SALIN_0, bs="ts",k=kVal)
# + s(log10_HYCOM_MAG_0, bs="ts",k=kVal)+ s(HYCOM_UPVEL_50, bs="ts",k=kVal)
# + s(log10_FrontDist_Cayula, bs="ts",k=kVal)+ s(EddyDist, bs="ts",k=kVal),
# data =Sub, method = "GCV.Cp",na.action = na.omit,family=tw(), weights = myWeights,
# control = list(keepData=TRUE))#
# sink(paste(outDir,SP,'_GAM_full_TF.txt'))
# summary(encounterAll_gam)
# gam.check(encounterAll_gam)
# sink()
# model <- encounterAll_gam
# coordinateSystem <- "GEOGCS['GCS_North_American_1983',DATUM['D_North_American_1983',SPHEROID[' GRS_1980',6378137.0,298.257222101]],PRIMEM['Greenwich',0.0],UNIT['Degree',0.0174532925199433]]"
# modelMetadata <- GetModelMetadata(terms(model), "mgcv", transformedCovars.train, NULL, y, NULL, NULL, coordinateSystem, model)
# # save model
# save(model, modelMetadata, file = paste(outDir,SP,'_GAM_pruned.Rdata',sep=''))
#
#
# # png(paste(outDir,SP,'_residuals_density_Full.png',sep=''), width = 1000, height = 800)
# # plot(rsd)
# # dev.off()
#
#
# # encounterAll <- gam(y ~ s(SST, bs="ts",k=5) + s(SSH, bs="ts",k=5) + s(log10_CHL, bs="ts",k=5) + s(log10_HYCOM_MLD, bs="ts",k=5) + s(HYCOM_EMP, bs="ts",k=5)
# # + s(HYCOM_DIR_0, bs="cc",k=5) + s(HYCOM_DIR_100, bs="cc",k=5)
# # + s(HYCOM_SALIN_0, bs="ts",k=5) + s(HYCOM_SALIN_100, bs="ts",k=5) + s(HYCOM_SALIN_800, bs="ts",k=5)
# # + s(log10_HYCOM_MAG_0, bs="ts",k=5) + s(log10_HYCOM_MAG_100, bs="ts",k=5) + s(HYCOM_MAG_800, bs="ts",k=5)
# # + s(HYCOM_UPVEL_100, bs="ts",k=5) + s(HYCOM_UPVEL_800),
# # method = "REML", data = transformedCovars.train, family = tw(),offset = log(mergedTrain.set$EffectiveArea),
# # na.action = na.omit)#
#
# # Output summary text to file
# sink(paste(outDir,SP,'_GAMM_density_full.txt'))
# summary(encounterAll$gam)
# gam.check(encounterAll$gam)
# sink()
#
# # Calculate and save residuals to text file
# rsd <-residuals.gam(encounterAll)
# png(paste(outDir,SP,'_residuals_density_Full.png',sep=''), width = 1000, height = 800)
# plot(rsd)
# dev.off()
#
# plot(encounterAll$gam,pages=1,ylim =c(-2,2))
#
# cat("Run reduced GAMM without unused variables\n")
# # look at that output, some covariates have been shrunk down to nothing, so remove them
# ctl <- gam.control()
# ctl$keepData = TRUE
# # encounterAll <- gamm(y ~ s(SSH, bs="ts",k=5)+ s(log10_HYCOM_MLD, bs="ts", k=5)
# # + s(HYCOM_DIR_0, bs="cc", k=5)
# # + s(HYCOM_SALIN_0, bs="ts", k=5),
# # control = list(keepData=TRUE), random=list(myCat=~1),weights = myWeights,
# # method = "REML", data = Sub, family = Tweedie(1.4),
# # na.action = na.omit)#
# encounterAll <- gamm(y ~ s(SST, bs="ts",k=kVal) + s(SSH, bs="ts", k=kVal) +
# + s(log10_CHL, bs="ts",k=kVal)+ s(log10_HYCOM_MLD, bs="ts",k=kVal) +s(HYCOM_SALIN_0, bs="ts", k=kVal)
# + s(log10_HYCOM_MAG_0, bs="ts", k=kVal)+ s(HYCOM_UPVEL_50, bs="ts", k=kVal)
# + s(log10_FrontDist_Cayula, bs="ts", k=kVal)+ s(EddyDist, bs="ts", k=kVal),
# control = list(keepData = TRUE), random=list(myCat=~1),weights = myWeights,
# method = "GCV.Cp", data = Sub, family = Tweedie(1.4),
# na.action = na.omit)#
#
# plot(encounterAll$gam,pages=1,ylim =c(-2,2))
#
# # Output summary text to file
# sink(paste(outDir,SP,'_GAM_density_pruned.txt'))
# summary(encounterAll$gam)
# gam.check(encounterAll$gam)
# sink()
#
# plot(encounterAll$gam)
#
# # Calculate and save residuals to text file
# rsd <-residuals.gam(encounterAll$gam)
# png(paste(outDir,SP,'_residuals_density_pruned.png',sep=''), width = 1000, height = 800)
# plot(rsd)
# dev.off()
# save model
# Predict on test data at MC, for comparison...
yTest1 <- mergedTest.set$Density[which(!is.na(mergedTest.set$Density))]
yTest <- mergedTest.set$Density>0
pred <- predict.gam(encounterAll_gamm_TF$gam,transformedCovars_AcOnly.test[which(Test_AcOnly.set$lat<=26),], type = 'response',na.action = na.omit)
plot(Test_AcOnly.set$date[which(Test_AcOnly.set$lat<=26)],pred)
# plot(Test_AcOnly.set$date[which(Test_AcOnly.set$lat<=26)],Test_AcOnly.set$Density[which(Test_AcOnly.set$lat<=26)])
# Density