-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_analytics&_model_(1).py
593 lines (450 loc) · 19.7 KB
/
data_analytics&_model_(1).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
# -*- coding: utf-8 -*-
"""data_analytics&_model (1).ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1oIE9E4iA2iUAU-jQ7kVlSncKzXBYGcgc
## Data cleaning
"""
import os
import pandas as pd
from matplotlib import pyplot as plt
import numpy as np
import seaborn as sns
from sklearn import linear_model
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn import feature_selection, metrics
from pandas.plotting import scatter_matrix
from seaborn import pairplot
from sklearn import feature_selection, metrics
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import confusion_matrix
import copy
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
os.chdir('/content/drive/MyDrive/big_data_pred/cw/')
dbdata = pd.read_csv('diabetic_data.csv')
#shape of the daibetes dataframe
dbdata.shape
#this implies that the data has 101,766 rows (observations) and 50 columns (attributes)
dbdata.head()
dbdata.info()
#some of the columns which are meant to be categorical are numerical in the data
#hence we need to convert them to categorical
dbdata.describe()
dbdata.hist(figsize = (20,20))
plt.show()
dbdata.isnull().sum()
#while there are several missing data in the dataframe, isnull() function shows that there is non.
#this is becuase the null data are not represented by na or nan, but rather by space and ?
#to replace the null values with na so that we can track them i'll use the regex functions
dbdata = dbdata.replace('?', np.nan) # replace ? with nan
dbdata = dbdata.replace('^\s+', np.nan, regex=True) # replace empty spaces with nan
print(dbdata.isna().sum())
print(dbdata.shape[0])
#Drop column with more than 50% missing values
dbdata.dropna(thresh=len(dbdata.index)/2, axis=1, inplace=True)
dbdata.shape
for x in dbdata.columns:
f = dbdata[x].value_counts()/dbdata.shape[0]
if f.to_frame().iloc[:, 0].max() >= 0.95:
dbdata.drop(x, axis = 1, inplace = True)
print(dbdata.shape)
dbdata['age'].value_counts()
def age(df):
for i in range(df.shape[0]):
if(df.loc[i,'age']=='[70-80)'):
df.loc[i,'age']=75
elif(df.loc[i,'age']=='[60-70)'):
df.loc[i,'age']=65
elif(df.loc[i,'age']=='[50-60)'):
df.loc[i,'age']=55
elif(df.loc[i,'age']=='[80-90)'):
df.loc[i,'age']=85
elif(df.loc[i,'age']=='[40-50)'):
df.loc[i,'age']=45
elif(df.loc[i,'age']=='[30-40)'):
df.loc[i,'age']=35
elif(df.loc[i,'age']=='[90-100)'):
df.loc[i,'age']=95
elif(df.loc[i,'age']=='[20-30)'):
df.loc[i,'age']=25
elif(df.loc[i,'age']=='[10-20)'):
df.loc[i,'age']=15
elif(df.loc[i,'age']=='[0-10)'):
df.loc[i,'age']=5
age(dbdata)
dbdata['age'] = pd.to_numeric(dbdata['age'], errors='coerce')
#replacing missing values in the follwing column with
diagcols = ['diag_1','diag_2', 'diag_3']
dbdata[diagcols] = dbdata[diagcols].fillna(0)
dbdata.dropna(inplace = True)
numeric_cols = dbdata.select_dtypes(include=['int64']).copy()
categorica_cols = dbdata.select_dtypes(include=['object']).copy()
for x in numeric_cols:
sns.boxplot(dbdata.loc[:,x])
plt.show()
#removing outliers above 3 std from the mean of the numeric columns
upperlimit = numeric_cols.mean() + 3*numeric_cols.std()
rmoutlier = numeric_cols[numeric_cols < upperlimit]
for x in numeric_cols.columns:
shell = dbdata[x] <= (dbdata[x].mean() + 3*dbdata[x].std())
dbdata = dbdata[shell]
dbdata.shape
dbdata.drop_duplicates(subset=['patient_nbr'], inplace=True)
dbdata.shape
for x in numeric_cols:
sns.boxplot(dbdata.loc[:,x])
plt.show()
dbdata
readmitted_count = dbdata.groupby(['readmitted']).size().sort_values(ascending=False)
readmitted_count
# Providing the information that 37.25% is the mean average rate of readmittence
"""## Data Exploration"""
# Commented out IPython magic to ensure Python compatibility.
# Move to the main install cell at the top
# %matplotlib inline
plt.style.use('ggplot')
"""#### Organising Data"""
dbdata.head()
# Merges the icd_description onto the table
icd_codes = pd.read_csv('/content/drive/MyDrive/big_data_pred/cw/icd_codes.csv')
icd_diabetes = pd.merge(dbdata, icd_codes, left_on='diag_1', right_on= 'ICD_Code')
icd_diabetes.columns
icd_diabetes.head()
# Produces a new table with information from the previous dataset, with the columns needed for analysis
exploration_data = copy.deepcopy(icd_diabetes)
exploration_data = exploration_data[['age', 'race', 'gender', 'Description', 'readmitted', 'time_in_hospital']]
exploration_data.columns = ['age', 'race', 'gender', 'diag_desc', 'Readmitted', 'time_in_hospital']
exploration_data.head()
"""#### Exploring Age Data"""
age_data = copy.deepcopy(exploration_data)
age_data = age_data[['age', 'Readmitted']]
age_data.head()
# Produces a table of the number of occurences for each age and readmission.
age_data = pd.crosstab(exploration_data['age'], exploration_data['Readmitted'] )
age_data
# Produces a barchart showing the frequencies of readmissions by age
age_data.plot(kind = 'bar')
plt.title('Frequency of Readmissions By Age Group')
plt.xlabel('Age')
plt.ylabel('Number of Readmissions')
#plt.savefig('/content/drive/MyDrive/big_data_pred/cw/graphs_out/Frequency_of_Readmissions_By_Age_Group.png', dpi=300)
plt.show()
# Converts the table into percentages of totals
age_data_perc = age_data[['<30', '>30', 'NO']] = age_data[['<30', '>30', 'NO']].apply(lambda x: x/x.sum() * 100, axis=1)
age_data_perc
# Produces a graph showing the percentages of readmissions by age
age_data_perc.plot(kind = 'bar')
plt.title('Percentage of Readmissions By Age Group')
plt.xlabel('Age')
plt.ylabel('Percentage of readmissions')
# plt.savefig('/content/drive/MyDrive/big_data_pred/cw/graphs_out/Percentage_of_Readmissions_By_Age_Group.png', dpi=300)
plt.show()
"""#### Exploring Race Data"""
# Produces a table of the number of occurences for each race and readmission.
race_data = pd.crosstab(exploration_data['race'], exploration_data['Readmitted'] )
race_data
# Produces a barchart showing the frequencies of readmissions by race
race_data.plot(kind = 'bar')
plt.title('Frequency of Readmissions By Race')
plt.xlabel('Race')
plt.ylabel('Number of Readmissions')
# plt.savefig('/content/drive/MyDrive/big_data_pred/cw/graphs_out/Frequency_of_Readmissions_By_Race.png', dpi=300)
plt.show()
# Shows the nummber of different race values in the dataset
exploration_data['race'].value_counts()
# Converts the table into percentages of totals
race_data_perc = race_data[['<30', '>30', 'NO']] = race_data[['<30', '>30', 'NO']].apply(lambda x: x/x.sum() * 100, axis=1)
race_data_perc
# Produces a graph showing the percentages of readmissions by race
race_data_perc.plot(kind = 'bar')
plt.title('Percentage of Readmissions By Race')
plt.xlabel('Race')
plt.ylabel('Percentage of readmissions')
# plt.savefig('/content/drive/MyDrive/big_data_pred/cw/graphs_out/Percentage_of_Readmissions_By_Race.png', dpi=300)
plt.show()
"""#### Exploring Gender Data"""
# Produces a table of the number of occurences for each gender and readmission.
gender_data = pd.crosstab(exploration_data['gender'], exploration_data['Readmitted'] )
gender_data
# Produces a barchart showing the frequencies of readmissions by gender
gender_data.plot(kind = 'bar')
plt.title('Frequency of Readmissions By Gender')
plt.xlabel('Gender')
plt.ylabel('Number of Readmissions')
# plt.savefig('/content/drive/MyDrive/big_data_pred/cw/graphs_out/Frequency_of_Readmissions_By_Gender.png', dpi=300)
plt.show()
exploration_data['gender'].value_counts()
# Converts the table into percentages of totals
gender_data_perc = gender_data[['<30', '>30', 'NO']] = gender_data[['<30', '>30', 'NO']].apply(lambda x: x/x.sum() * 100, axis=1)
gender_data_perc
# Produces a graph showing the percentages of readmissions by gender
gender_data_perc.plot(kind = 'bar')
plt.title('Percentage of Readmissions By Gender')
plt.xlabel('Gender')
plt.ylabel('Percentage of readmissions')
plt.show()
"""#### Exploring Diagnosis Data"""
# Produces a table of the number of occurences for each diagnosis type and readmission.
diagnosis_data = pd.crosstab(exploration_data['diag_desc'], exploration_data['Readmitted'], margins = True)
diagnosis_data
diagnosis_data = exploration_data[['diag_desc', 'Readmitted']]
# Converts readmitted to '1' and not readmitted to '0'
diagnosis_data['Readmitted'] = diagnosis_data['Readmitted'].map({'<30': 1, '>30': 1, 'NO': 0})
# Produces a table of the amount of times each diagnosis type was readmitted or not
diagnosis_data = diagnosis_data.groupby(['diag_desc', 'Readmitted']).size().sort_values(ascending=False)
diagnosis_data = diagnosis_data.to_frame()
diagnosis_data.sort_values(by = ['diag_desc'])
diagnosis_data.rename({0: 'count'}, axis=1, inplace=True)
diagnosis_data
# Produces a table with just readmitted. To be merged later.
readmitted_diag = diagnosis_data.query('Readmitted == 1')
readmitted_diag.rename({'count': 'readmitted_count'}, axis=1, inplace=True)
readmitted_diag
# Produces a table with patients not readmitted. To be merged later.
not_readmitted_diag = diagnosis_data.query('Readmitted == 0')
not_readmitted_diag.rename({'count': 'not_readmitted_count'}, axis=1, inplace=True)
not_readmitted_diag
# Completes an outer join on the above tables, to compare the amount of readmissions for each diagnosis type
merged_diag = not_readmitted_diag.merge(readmitted_diag, on='diag_desc', how='outer')
# Replaces Na values with 0
# As they were only missing initially because they were missing values, i.e. 0
merged_diag = merged_diag.fillna(0)
# Removes any data with less that 30 cases reported. This removes any extreme outliers
merged_diag = merged_diag[merged_diag['not_readmitted_count'] + merged_diag['readmitted_count'] > 30]
# Produces a new column with the percentage of people that were readmitted, for each diagnosis type
merged_diag['perc_of_readmitted'] = round((merged_diag['readmitted_count'] / (merged_diag['readmitted_count'] + merged_diag['not_readmitted_count'])) * 100, 2)
merged_diag = merged_diag.sort_values(by='perc_of_readmitted', ascending=False)
merged_diag
readmitted_count = dbdata.groupby(['readmitted']).size().sort_values(ascending=False)
perc_readmitted = ((readmitted_count[1] + readmitted_count[2]) / (readmitted_count[0] + readmitted_count[1] + readmitted_count[2]) * 100)
print("The mean average of percentage of readmissions was ", round(perc_readmitted, 2), "%", sep = "")
# Providing the information that 37.25% is the mean average rate of readmittence
# Produces a graph to display the above data
# Centers the data around the mean rate of readmissions
merged_diag['colors'] = ['red' if x > round(perc_readmitted, 2) else 'green' for x in merged_diag['perc_of_readmitted']]
# Increases the resolution and size so the output is usable
plt.figure(figsize=(14,30), dpi= 200)
# Defines the graph
plt.hlines(y=merged_diag.index, xmin=37.25, xmax=merged_diag.perc_of_readmitted, color=merged_diag.colors, alpha=0.4, linewidth=5)
plt.xlabel('Readmissions as a percentage of the total amount of cases')
plt.title('Number of readmissions per diagnosis type, as a percentage of the amount of cases.\nRelative to the mean amount of readmissions.', loc='left')
# plt.savefig('/content/drive/MyDrive/big_data_pred/cw/graphs_out/Number_of_readmissions_per_diagnosis_type.png',figsize=(20,25), dpi=200)
plt.show()
"""#### Exploring Length of Stay Data"""
# Produces a table of the length of stay in hospital, compared to age.
stay_length_data = pd.crosstab(exploration_data['age'], exploration_data['time_in_hospital'] )
stay_length_data
# Converts the table into percentages of totals
stay_length_data_perc = stay_length_data[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]] = stay_length_data[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]].apply(lambda x: x/x.sum() * 100, axis=1)
stay_length_data_perc
# Removes some extreme values whihc subtract from the overall analysis
stay_length_data_perc.drop(13, inplace=True, axis=1)
stay_length_data_perc.drop(12, inplace=True, axis=1)
stay_length_data_perc.drop(11, inplace=True, axis=1)
stay_length_data_perc.drop(5, inplace=True, axis=0)
stay_length_data_perc.drop(15, inplace=True, axis=0)
stay_length_data_perc.drop(25, inplace=True, axis=0)
stay_length_data_perc
# Produces a graph showing the percentages of readmissions by gender
stay_length_data_perc.plot(kind = 'line')
plt.title('Percentage of lengths of stays, per age group')
plt.xlabel('Age groups')
plt.ylabel('Percentage of length of stay')
plt.legend(loc=(1.04,0.3))
plt.show()
"""
### Data exploration Analysis
"""
for x in dbdata.dtypes[dbdata.dtypes != "object"].index:
sns.boxplot(dbdata.loc[:,x])
plt.show()
dbdata['diag_1'].value_counts()
dbdata['diag_2'].value_counts()
dbdata['diag_3'].value_counts()
icd_codes = pd.read_csv('icd_codes.csv')
icd_diabetes = pd.merge(dbdata, icd_codes, left_on='diag_1', right_on= 'ICD_Code')
icd_diabetes.columns
# plot with various axes scales
fig = plt.figure(figsize=(8, 12))
f = plt.figure(1)
f.subplots_adjust(hspace=.3)
## Plot Age vs readmitted
plt.subplot(4,1,1)
plt.plot(icd_diabetes['age'],icd_diabetes['readmitted'],'rs')
plt.ylabel('Age')
plt.xlabel('Readmitted')
plt.grid(True)
plt.title('Age vs Readmitted')
## Plot Race vs Readmitted
plt.subplot(4,1,2)
plt.plot(icd_diabetes['race'],icd_diabetes['readmitted'],'bo')
plt.ylabel('Race')
plt.xlabel('Readmitted')
plt.grid(True)
plt.title('Race vs Readmitted')
## Plot Gender vs Readmitted
plt.subplot(4,1,3)
plt.plot(icd_diabetes['gender'],icd_diabetes['readmitted'],'go')
plt.ylabel('Gender')
plt.xlabel('Readmitted')
plt.title('Gender vs Readmitted')
plt.grid(True)
plt.show()
## Plot Primary Diagnosis vs Readmitted
plt.subplot(4,1,4)
plt.plot(icd_diabetes['diag_1'],icd_diabetes['readmitted'],'go')
plt.ylabel('Primary Diagnosis')
plt.xlabel('Readmitted')
plt.title('Primary Diagnosis vs Readmitted')
plt.grid(True)
plt.show()
scatter_matrix(icd_diabetes, diagonal='kde')
plt.show()
pairplot(icd_diabetes)
plt.show()
## Numeric columns
plot_cols = ["age",
"race",
"gender",
"diag_1"]
## Create a scatter plot matric --- a pair-wise scatter plots
def auto_pairs(plot_cols, df):
fig = plt.figure(1, figsize=(12, 12))
fig.clf()
ax = fig.gca()
scatter_matrix(df[plot_cols], diagonal='hist', ax = ax)
plt.show()
return('Done')
auto_pairs(plot_cols, icd_diabetes)
## Create conditional scatter plot
def auto_scatter(df, plot_cols):
for col in plot_cols:
g = sns.FacetGrid(df,\
margin_titles=True,\
hue="fuel-type",\
palette={"diesel": "red", "gas": "blue"},\
height=8)
g.map(plt.scatter, col, "price")
g.add_legend()
plt.show()
plot_cols3 = ["length", \
"curb-weight", \
"engine-size", \
"city-mpg"]
auto_scatter(df_cln, plot_cols3)
# Let us check the impact of property size on the market value
icd_d.plot.scatter(x='Property_size', y='Market_value',c='DarkBlue')
plt.xlabel('Property_size')
plt.ylabel('Market_value')
plt.show()
f, ax = plt.subplots(2)
data.plot.scatter(x="curb-weight",y="engine-size",ax=ax[0], title="Original data")
data_norm.plot.scatter(x="curb-weight", y="engine-size", ax=ax[1], title="Normalized data")
f.subplots_adjust(hspace=1)
plt.show()
"""# Part 3"""
subset_list = ['num_medications', 'number_outpatient', 'number_emergency', 'time_in_hospital',\
'number_inpatient', 'encounter_id', 'age', 'num_lab_procedures', 'number_diagnoses',\
'num_procedures', 'readmitted']
logsubset = dbdata[subset_list]
indp_col = dbdata[subset_list].select_dtypes(include=[np.number])
indp_col
#of all the independent variable only age is not numerical.
logsubset
readmittion_test = logsubset.copy()
readmittion_test[readmittion_test['readmitted'] != 'NO']
readmittion_test.loc[:,'readmitted'][readmittion_test.loc[:,'readmitted'] != 'NO'] = 0
readmittion_test.loc[:,'readmitted'][readmittion_test.loc[:,'readmitted'] == 'NO'] = 1
readmittion_test[readmittion_test['readmitted'] == 0]
dbdata.head()
#Showing the percentage of the responses
print((readmittion_test['readmitted'].value_counts())/readmittion_test['readmitted'].size)
readmittion_test['readmitted'].hist(figsize = (10,10))
plt.show()
#over 62% person were readmitted while less tha 39% were not readmitted.
readmittion_test.groupby('readmitted').mean()
#the average number of medications taken by someone who was admitted is 14.801811 ........
def readmitted_hist(df, plots_var, grid_cols):
for x in plots_var:
plot = sns.FacetGrid(df, col = grid_cols, margin_titles = True)
plot.map(plt.hist, x)
plt.show()
readmitted_hist(readmittion_test, indp_col, 'readmitted')
def readmittion_boxplot(df):
for col in df.select_dtypes(include=[np.number]).columns:
fig = plt.figure(figsize=(6, 6))
fig.clf()
ax = fig.gca()
df.boxplot(column=[col], ax=ax, by=['readmitted'])
plt.show()
return('Done')
readmittion_boxplot(readmittion_test)
"""From the result of the boxplot, only variables [number_of_inpatient, number_of_emergency,
number_of_outpatient] seems to have no effect on the readmittion of patients and this sounds
logical. The histogram also gives similar result."""
readmittion_test.head()
X = readmittion_test.select_dtypes(include=[np.number]).copy()
scaler = StandardScaler()
X0 = scaler.fit_transform(X)
X0 = pd.DataFrame(X0, index=X.index, columns=X.columns)
Y0 = readmittion_test['readmitted'].astype('int')
logit_model=sm.Logit(Y0,X0)
result=logit_model.fit()
print(result.summary())
"""The result from the p-values shows that most of variable are significant in the model."""
X_train, X_test, Y_train, Y_test = train_test_split(
X0, Y0, test_size = 0.3)
lg = linear_model.LogisticRegression()
lg.fit(X_train, Y_train)
print("Score from training data: {}".format(lg.score(X_train, Y_train)))
print("Score from test data: {}".format(lg.score(X_test, Y_test)))
print("Intercept:\n {}".format(lg.intercept_))
print("Coefficients:\n")
for feat, coef in zip(X, lg.coef_[0]):
print(" {:>20}: {}".format(feat, coef))
y_pred = lg.predict(X_test)
print(y_pred)
confusion_matrix = confusion_matrix(Y_test, y_pred)
print(confusion_matrix)
"""The result shows that 420 and 3017 were correctly predicted while 271
and 1573 were wrongly predicted."""
print(classification_report(Y_test, y_pred))
#Chose 7 becuase the boxplot shows me 7 variables have impact on the readmittio
selected = feature_selection.RFE(lg, n_features_to_select=7, verbose=0, step=1)
selected = selected.fit(X0, Y0)
r_features = X0.loc[:, selected.support_]
print("R features are:\n{}".format(','.join(list(r_features))))
X0.loc[:, selected.support_]
X2 = r_features
Y = Y0
trainX, testX, trainY, testY = train_test_split(X2, Y, test_size=0.3, random_state=0)
lg2 = linear_model.LogisticRegression()
lg2.fit(trainX, trainY)
print("Score from training data: {}".format(lg2.score(trainX, trainY)))
print("Score from test data: {}".format(lg2.score(testX, testY)))
print("Intercept:\n {}".format(lg2.intercept_))
print("Coefficients:\n")
for feat2, coef2 in zip(X2, lg2.coef_[0]):
print(" {:>20}: {}".format(feat2, coef2))
predicted = lg2.predict(testX)
print("Mean hits: {}".format(np.mean(predicted==testY)))
scores = cross_val_score(linear_model.LogisticRegression(), X2, Y, scoring='accuracy', cv=8)
scores
print("Mean scores: {}".format(scores.mean()))
confusion_matrix2 = confusion_matrix(testY, predicted)
print(confusion_matrix2)
prob = np.array(lg2.predict_proba(testX)[:, 1])
testY += 1
fpr, sensitivity, _ = metrics.roc_curve(testY, prob, pos_label=2)
print("AUC = {}".format(metrics.auc(fpr, sensitivity)))
plt.scatter(fpr, fpr, c='b', marker='s')
plt.scatter(fpr, sensitivity, c='r', marker='o')
plt.title('AUC of Linear Model')
plt.xlabel('False positive Rate')
plt.ylabel('True positive Rate')
plt.show()