forked from google-research/simclr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
418 lines (341 loc) · 13.1 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
# coding=utf-8
# Copyright 2020 The SimCLR Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific simclr governing permissions and
# limitations under the License.
# ==============================================================================
"""The main training pipeline."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import math
import os
from absl import app
from absl import flags
import resnet
import data as data_lib
import model as model_lib
import model_util as model_util
import tensorflow.compat.v1 as tf
import tensorflow_datasets as tfds
import tensorflow_hub as hub
FLAGS = flags.FLAGS
flags.DEFINE_float(
'learning_rate', 0.3,
'Initial learning rate per batch size of 256.')
flags.DEFINE_float(
'warmup_epochs', 10,
'Number of epochs of warmup.')
flags.DEFINE_float(
'weight_decay', 1e-6,
'Amount of weight decay to use.')
flags.DEFINE_float(
'batch_norm_decay', 0.9,
'Batch norm decay parameter.')
flags.DEFINE_integer(
'train_batch_size', 512,
'Batch size for training.')
flags.DEFINE_string(
'train_split', 'train',
'Split for training.')
flags.DEFINE_integer(
'train_epochs', 100,
'Number of epochs to train for.')
flags.DEFINE_integer(
'train_steps', 0,
'Number of steps to train for. If provided, overrides train_epochs.')
flags.DEFINE_integer(
'eval_batch_size', 256,
'Batch size for eval.')
flags.DEFINE_integer(
'train_summary_steps', 100,
'Steps before saving training summaries. If 0, will not save.')
flags.DEFINE_integer(
'checkpoint_epochs', 1,
'Number of epochs between checkpoints/summaries.')
flags.DEFINE_integer(
'checkpoint_steps', 0,
'Number of steps between checkpoints/summaries. If provided, overrides '
'checkpoint_epochs.')
flags.DEFINE_string(
'eval_split', 'validation',
'Split for evaluation.')
flags.DEFINE_string(
'dataset', 'imagenet2012',
'Name of a dataset.')
flags.DEFINE_bool(
'cache_dataset', False,
'Whether to cache the entire dataset in memory. If the dataset is '
'ImageNet, this is a very bad idea, but for smaller datasets it can '
'improve performance.')
flags.DEFINE_enum(
'mode', 'train', ['train', 'eval', 'train_then_eval'],
'Whether to perform training or evaluation.')
flags.DEFINE_enum(
'train_mode', 'pretrain', ['pretrain', 'finetune'],
'The train mode controls different objectives and trainable components.')
flags.DEFINE_string(
'checkpoint', None,
'Loading from the given checkpoint for continued training or fine-tuning.')
flags.DEFINE_string(
'variable_schema', '?!global_step',
'This defines whether some variable from the checkpoint should be loaded.')
flags.DEFINE_bool(
'zero_init_logits_layer', False,
'If True, zero initialize layers after avg_pool for supervised learning.')
flags.DEFINE_integer(
'fine_tune_after_block', -1,
'The layers after which block that we will fine-tune. -1 means fine-tuning '
'everything. 0 means fine-tuning after stem block. 4 means fine-tuning '
'just the linera head.')
flags.DEFINE_string(
'master', None,
'Address/name of the TensorFlow master to use. By default, use an '
'in-process master.')
flags.DEFINE_string(
'model_dir', None,
'Model directory for training.')
flags.DEFINE_string(
'data_dir', None,
'Directory where dataset is stored.')
flags.DEFINE_bool(
'use_tpu', True,
'Whether to run on TPU.')
tf.flags.DEFINE_string(
'tpu_name', None,
'The Cloud TPU to use for training. This should be either the name '
'used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 '
'url.')
tf.flags.DEFINE_string(
'tpu_zone', None,
'[Optional] GCE zone where the Cloud TPU is located in. If not '
'specified, we will attempt to automatically detect the GCE project from '
'metadata.')
tf.flags.DEFINE_string(
'gcp_project', None,
'[Optional] Project name for the Cloud TPU-enabled project. If not '
'specified, we will attempt to automatically detect the GCE project from '
'metadata.')
flags.DEFINE_enum(
'optimizer', 'lars', ['momentum', 'adam', 'lars'],
'Optimizer to use.')
flags.DEFINE_float(
'momentum', 0.9,
'Momentum parameter.')
flags.DEFINE_string(
'eval_name', None,
'Name for eval.')
flags.DEFINE_integer(
'keep_checkpoint_max', 5,
'Maximum number of checkpoints to keep.')
flags.DEFINE_integer(
'keep_hub_module_max', 1,
'Maximum number of Hub modules to keep.')
flags.DEFINE_float(
'temperature', 0.1,
'Temperature parameter for contrastive loss.')
flags.DEFINE_boolean(
'hidden_norm', True,
'Temperature parameter for contrastive loss.')
flags.DEFINE_enum(
'head_proj_mode', 'nonlinear', ['none', 'linear', 'nonlinear'],
'How the head projection is done.')
flags.DEFINE_integer(
'head_proj_dim', 128,
'Number of head projection dimension.')
flags.DEFINE_integer(
'num_nlh_layers', 1,
'Number of non-linear head layers.')
flags.DEFINE_boolean(
'global_bn', True,
'Whether to aggregate BN statistics across distributed cores.')
flags.DEFINE_integer(
'width_multiplier', 1,
'Multiplier to change width of network.')
flags.DEFINE_integer(
'resnet_depth', 50,
'Depth of ResNet.')
flags.DEFINE_integer(
'image_size', 224,
'Input image size.')
flags.DEFINE_float(
'color_jitter_strength', 1.0,
'The strength of color jittering.')
flags.DEFINE_boolean(
'use_blur', True,
'Whether or not to use Gaussian blur for augmentation during pretraining.')
def build_hub_module(model, num_classes, global_step, checkpoint_path):
"""Create TF-Hub module."""
tags_and_args = [
# The default graph is built with batch_norm, dropout etc. in inference
# mode. This graph version is good for inference, not training.
([], {'is_training': False}),
# A separate "train" graph builds batch_norm, dropout etc. in training
# mode.
(['train'], {'is_training': True}),
]
def module_fn(is_training):
"""Function that builds TF-Hub module."""
endpoints = {}
inputs = tf.placeholder(
tf.float32, [None, FLAGS.image_size, FLAGS.image_size, 3])
with tf.variable_scope('base_model', reuse=tf.AUTO_REUSE):
hiddens = model(inputs, is_training)
for v in ['initial_conv', 'initial_max_pool', 'block_group1',
'block_group2', 'block_group3', 'block_group4',
'final_avg_pool']:
endpoints[v] = tf.get_default_graph().get_tensor_by_name(
'base_model/{}:0'.format(v))
if FLAGS.train_mode == 'pretrain':
hiddens_proj = model_util.projection_head(hiddens, is_training)
endpoints['proj_head_input'] = hiddens
endpoints['proj_head_output'] = hiddens_proj
else:
logits_sup = model_util.supervised_head(
hiddens, num_classes, is_training)
endpoints['logits_sup'] = logits_sup
hub.add_signature(inputs=dict(images=inputs),
outputs=dict(endpoints, default=hiddens))
# Drop the non-supported non-standard graph collection.
drop_collections = ['trainable_variables_inblock_%d'%d for d in range(6)]
spec = hub.create_module_spec(module_fn, tags_and_args, drop_collections)
hub_export_dir = os.path.join(FLAGS.model_dir, 'hub')
checkpoint_export_dir = os.path.join(hub_export_dir, str(global_step))
if tf.io.gfile.exists(checkpoint_export_dir):
# Do not save if checkpoint already saved.
tf.io.gfile.rmtree(checkpoint_export_dir)
spec.export(
checkpoint_export_dir,
checkpoint_path=checkpoint_path,
name_transform_fn=None)
if FLAGS.keep_hub_module_max > 0:
# Delete old exported Hub modules.
exported_steps = []
for subdir in tf.io.gfile.listdir(hub_export_dir):
if not subdir.isdigit():
continue
exported_steps.append(int(subdir))
exported_steps.sort()
for step_to_delete in exported_steps[:-FLAGS.keep_hub_module_max]:
tf.io.gfile.rmtree(os.path.join(hub_export_dir, str(step_to_delete)))
def perform_evaluation(estimator, input_fn, eval_steps, model, num_classes,
checkpoint_path=None):
"""Perform evaluation.
Args:
estimator: TPUEstimator instance.
input_fn: Input function for estimator.
eval_steps: Number of steps for evaluation.
model: Instance of transfer_learning.models.Model.
num_classes: Number of classes to build model for.
checkpoint_path: Path of checkpoint to evaluate.
Returns:
result: A Dict of metrics and their values.
"""
if not checkpoint_path:
checkpoint_path = estimator.latest_checkpoint()
result = estimator.evaluate(
input_fn, eval_steps, checkpoint_path=checkpoint_path,
name=FLAGS.eval_name)
# Record results as JSON.
result_json_path = os.path.join(FLAGS.model_dir, 'result.json')
with tf.io.gfile.GFile(result_json_path, 'w') as f:
json.dump({k: float(v) for k, v in result.items()}, f)
result_json_path = os.path.join(
FLAGS.model_dir, 'result_%d.json'%result['global_step'])
with tf.io.gfile.GFile(result_json_path, 'w') as f:
json.dump({k: float(v) for k, v in result.items()}, f)
flag_json_path = os.path.join(FLAGS.model_dir, 'flags.json')
with tf.io.gfile.GFile(flag_json_path, 'w') as f:
json.dump(FLAGS.flag_values_dict(), f)
# Save Hub module.
build_hub_module(model, num_classes,
global_step=result['global_step'],
checkpoint_path=checkpoint_path)
return result
def main(argv):
if len(argv) > 1:
raise app.UsageError('Too many command-line arguments.')
# Enable training summary.
if FLAGS.train_summary_steps > 0:
tf.config.set_soft_device_placement(True)
builder = tfds.builder(FLAGS.dataset, data_dir=FLAGS.data_dir)
builder.download_and_prepare()
num_train_examples = builder.info.splits[FLAGS.train_split].num_examples
num_eval_examples = builder.info.splits[FLAGS.eval_split].num_examples
num_classes = builder.info.features['label'].num_classes
train_steps = model_util.get_train_steps(num_train_examples)
eval_steps = int(math.ceil(num_eval_examples / FLAGS.eval_batch_size))
epoch_steps = int(round(num_train_examples / FLAGS.train_batch_size))
resnet.BATCH_NORM_DECAY = FLAGS.batch_norm_decay
model = resnet.resnet_v1(
resnet_depth=FLAGS.resnet_depth,
width_multiplier=FLAGS.width_multiplier,
cifar_stem=FLAGS.image_size <= 32)
checkpoint_steps = (
FLAGS.checkpoint_steps or (FLAGS.checkpoint_epochs * epoch_steps))
cluster = None
if FLAGS.use_tpu and FLAGS.master is None:
if FLAGS.tpu_name:
cluster = tf.distribute.cluster_resolver.TPUClusterResolver(
FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
else:
cluster = tf.distribute.cluster_resolver.TPUClusterResolver()
tf.config.experimental_connect_to_cluster(cluster)
tf.tpu.experimental.initialize_tpu_system(cluster)
default_eval_mode = tf.estimator.tpu.InputPipelineConfig.PER_HOST_V1
sliced_eval_mode = tf.estimator.tpu.InputPipelineConfig.SLICED
run_config = tf.estimator.tpu.RunConfig(
tpu_config=tf.estimator.tpu.TPUConfig(
iterations_per_loop=checkpoint_steps,
eval_training_input_configuration=sliced_eval_mode
if FLAGS.use_tpu else default_eval_mode),
model_dir=FLAGS.model_dir,
save_summary_steps=checkpoint_steps,
save_checkpoints_steps=checkpoint_steps,
keep_checkpoint_max=FLAGS.keep_checkpoint_max,
master=FLAGS.master,
cluster=cluster)
estimator = tf.estimator.tpu.TPUEstimator(
model_lib.build_model_fn(model, num_classes, num_train_examples),
config=run_config,
train_batch_size=FLAGS.train_batch_size,
eval_batch_size=FLAGS.eval_batch_size,
use_tpu=FLAGS.use_tpu)
if FLAGS.mode == 'eval':
for ckpt in tf.train.checkpoints_iterator(
run_config.model_dir, min_interval_secs=15):
try:
result = perform_evaluation(
estimator=estimator,
input_fn=data_lib.build_input_fn(builder, False),
eval_steps=eval_steps,
model=model,
num_classes=num_classes,
checkpoint_path=ckpt)
except tf.errors.NotFoundError:
continue
if result['global_step'] >= train_steps:
return
else:
estimator.train(
data_lib.build_input_fn(builder, True), max_steps=train_steps)
if FLAGS.mode == 'train_then_eval':
perform_evaluation(
estimator=estimator,
input_fn=data_lib.build_input_fn(builder, False),
eval_steps=eval_steps,
model=model,
num_classes=num_classes)
if __name__ == '__main__':
tf.disable_eager_execution() # Disable eager mode when running with TF2.
app.run(main)