-
-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathrun_supervised_learning.py
631 lines (533 loc) · 31.2 KB
/
run_supervised_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
from pysc2.env import sc2_env, available_actions_printer
from pysc2.lib import actions, features, units
from pysc2.lib.actions import FunctionCall, FUNCTIONS
from pysc2.env.environment import TimeStep, StepType
from pysc2.lib.actions import TYPES as ACTION_TYPES
import os
import abc
import sys
import math
import argparse
import statistics
import random
import gym
import glob
import gc
import pylab
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
from collections import namedtuple
import functools
from multiprocessing import Pool, TimeoutError
import multiprocessing
import tensorflow as tf
from tensorflow.keras.models import Model, load_model
from tensorflow.keras.layers import Input, Dense, Lambda, Add, Conv2D, Flatten
from tensorflow.keras.optimizers import Adam, RMSprop
from tensorflow.keras import backend as K
import tensorflow_probability as tfp
from tensorflow_probability.python.distributions import kullback_leibler
from sklearn import preprocessing
import time
import network as network
import hickle as hkl
import utils
from multiprocessing import Process, Queue, Event
import multiprocessing as mp
from absl import flags
FLAGS = flags.FLAGS
FLAGS(['run.py'])
'''
python3.7 run_supervised_learning.py --workspace_path /home/kimbring2/AlphaStar_Implementation/ --model_name alphastar --training True --gpu_use True --learning_rate 0.0001 --replay_hkl_file_path /media/kimbring2/be356a87-def6-4be8-bad2-077951f0f3da/pysc2_dataset/ --environment Simple64 --model_name alphastar
'''
parser = argparse.ArgumentParser(description='AlphaStar implementation')
parser.add_argument('--environment', type=str, default='MoveToBeacon', help='name of SC2 environment')
parser.add_argument('--workspace_path', type=str, help='root directory for checkpoint storage')
parser.add_argument('--visualize', type=bool, default=False, help='render with pygame')
parser.add_argument('--model_name', type=str, default='fullyconv', help='model name')
parser.add_argument('--training', type=bool, default=False, help='training model')
parser.add_argument('--gpu_use', type=bool, default=False, help='use gpu')
parser.add_argument('--seed', type=int, default=123, help='seed number')
parser.add_argument('--training_episode', type=int, default=5000, help='training number')
parser.add_argument('--pretrained_model', type=str, default=None, help='pretrained model name')
parser.add_argument('--save', type=bool, default=False, help='save trained model')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='learning rate')
parser.add_argument('--player_1', type=str, default='terran', help='race of player 1')
parser.add_argument('--player_2', type=str, default='terran', help='race of player 2')
parser.add_argument('--screen_size', type=int, default=32, help='screen resolution')
parser.add_argument('--minimap_size', type=int, default=32, help='minimap resolution')
parser.add_argument('--replay_dir', type=str, default="replay", help='replay save path')
parser.add_argument('--replay_hkl_file_path', type=str, default="replay", help='path of replay file for SL')
parser.add_argument('--save_replay_episodes', type=int, default=10, help='minimap resolution')
parser.add_argument('--tensorboard_path', type=str, default="tensorboard", help='Folder for saving Tensorboard log file')
arguments = parser.parse_args()
seed = arguments.seed
tf.random.set_seed(seed)
np.random.seed(seed)
tfd = tfp.distributions
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
_PLAYER_RELATIVE = features.SCREEN_FEATURES.player_relative.index
_PLAYER_RELATIVE_SCALE = features.SCREEN_FEATURES.player_relative.scale
_PLAYER_SELF = features.PlayerRelative.SELF
_PLAYER_NEUTRAL = features.PlayerRelative.NEUTRAL
_PLAYER_ENEMY = features.PlayerRelative.ENEMY
_NUM_FUNCTIONS = len(actions.FUNCTIONS)
is_spatial_action = {}
for name, arg_type in actions.TYPES._asdict().items():
# HACK: we should infer the point type automatically
is_spatial_action[arg_type] = name in ['minimap', 'screen', 'screen2']
if arguments.gpu_use == True:
gpus = tf.config.experimental.list_physical_devices('GPU')
tf.config.experimental.set_virtual_device_configuration(gpus[0],
[tf.config.experimental.VirtualDeviceConfiguration(memory_limit=6000)])
else:
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
def check_nonzero(mask):
"""Mask should be a set of bools from comparison with a feature layer."""
y, x = mask.nonzero()
indexs_nonzero_list = list(zip(x, y))
for indexs_nonzero in indexs_nonzero_list:
x = indexs_nonzero[0]
y = indexs_nonzero[1]
def take_vector_elements(vectors, indices):
return tf.gather_nd(vectors, tf.stack([tf.range(tf.shape(vectors)[0]), indices], axis=1))
def actions_to_pysc2(fn_id, arg_ids, size):
height, width = size
actions_list = []
a_0 = int(fn_id)
a_l = []
for arg_type in FUNCTIONS._func_list[a_0].args:
arg_id = int(arg_ids[arg_type])
if is_spatial_action[arg_type]:
arg = [arg_id % width, arg_id // height]
else:
arg = [arg_id]
a_l.append(arg)
action = FunctionCall(a_0, a_l)
actions_list.append(action)
return actions_list
def mask_unused_argument_samples(fn_id, arg_ids):
args_out = dict()
for arg_type in actions.TYPES:
args_out[arg_type] = arg_ids[arg_type][0]
a_0 = fn_id[0]
unused_types = set(ACTION_TYPES) - set(FUNCTIONS._func_list[int(a_0)].args)
for arg_type in unused_types:
args_out[arg_type] = -1
return fn_id, args_out
def mask_unavailable_actions(available_actions, fn_pi):
available_actions = available_actions
available_actions = tf.cast(available_actions, 'float32')
fn_pi *= available_actions
fn_pi /= tf.reduce_sum(fn_pi, axis=1, keepdims=True)
return fn_pi
@tf.function
def sample_actions(available_actions, fn_pi, arg_pis):
def sample(probs):
dist = tfd.Categorical(probs=probs)
return dist.sample()
fn_pi = mask_unavailable_actions(available_actions, fn_pi)
fn_samples = sample(fn_pi)
arg_samples = dict()
for arg_type, arg_pi in arg_pis.items():
arg_samples[arg_type] = sample(arg_pi)
return fn_samples, arg_samples
def compute_policy_entropy(available_actions, fn_pi, arg_pis, fn_id, arg_ids):
def compute_entropy(probs):
return -tf.reduce_sum(safe_log(probs) * probs, axis=-1)
fn_pi = mask_unavailable_actions(available_actions, fn_pi)
entropy = tf.reduce_mean(compute_entropy(fn_pi))
for index, arg_type in enumerate(actions.TYPES):
arg_id = arg_ids[index]
arg_pi = arg_pis[arg_type]
batch_mask = tf.cast(tf.not_equal(arg_id, -1), 'float32')
arg_entropy = safe_div(
tf.reduce_sum(compute_entropy(arg_pi) * batch_mask),
tf.reduce_sum(batch_mask))
entropy += arg_entropy
return entropy
env_name = arguments.environment
workspace_path = arguments.workspace_path
Save_Path = 'Models'
model = network.make_model(arguments.model_name)
if arguments.pretrained_model != None:
model.load_weights(workspace_path + "/Models/" + arguments.pretrained_model)
writer = tf.summary.create_file_writer(workspace_path + "/tensorboard/supervised_learning")
feature_screen_size = arguments.screen_size
feature_minimap_size = arguments.minimap_size
class TrajetoryDataset(tf.data.Dataset):
def _generator(num_trajectorys):
while True:
replay_file_path_list = glob.glob(arguments.replay_hkl_file_path + '*.hkl')
replay_file_path = random.choice(replay_file_path_list)
try:
replay = hkl.load(replay_file_path)
except:
continue
home_replay_done = False
home_replay_feature_screen_list, home_replay_feature_minimap_list = [], []
home_replay_player_list, home_replay_feature_units_list = [], []
home_replay_available_actions_list, last_action_type_list = [], []
home_replay_fn_id_list, home_replay_arg_ids_list = [], []
home_replay_game_loop_list, home_replay_build_queue_list = [], []
home_replay_single_select_list, home_replay_multi_select_list = [], []
home_replay_score_cumulative_list = []
last_action_type = [0]
replay_file_length = len(replay['home_game_loop'])
num_samples = replay_file_length
for sample_idx in range(1, num_samples):
home_replay_feature_screen = replay['home_feature_screen'][sample_idx-1]
home_replay_feature_screen = utils.preprocess_screen(home_replay_feature_screen)
home_replay_feature_screen = np.transpose(home_replay_feature_screen, (1, 2, 0))
home_replay_feature_minimap = replay['home_feature_minimap'][sample_idx-1]
home_replay_feature_minimap = utils.preprocess_minimap(home_replay_feature_minimap)
home_replay_feature_minimap = np.transpose(home_replay_feature_minimap, (1, 2, 0))
home_replay_player = replay['home_player'][sample_idx-1]
home_replay_player = utils.preprocess_player(home_replay_player)
home_replay_feature_units = replay['home_feature_units'][sample_idx-1]
home_replay_feature_units = utils.preprocess_feature_units(home_replay_feature_units, feature_screen_size)
home_replay_game_loop = replay['home_game_loop'][sample_idx-1]
home_replay_available_actions = replay['home_available_actions'][sample_idx-1]
home_replay_available_actions = utils.preprocess_available_actions(home_replay_available_actions)
home_replay_build_queue = replay['home_build_queue'][sample_idx-1]
home_replay_build_queue = utils.preprocess_build_queue(home_replay_build_queue)
home_replay_single_select = replay['home_single_select'][sample_idx-1]
home_replay_single_select = utils.preprocess_single_select(home_replay_single_select)
home_replay_multi_select = replay['home_multi_select'][sample_idx-1]
home_replay_multi_select = utils.preprocess_multi_select(home_replay_multi_select)
home_replay_score_cumulative = replay['home_score_cumulative'][sample_idx-1]
home_replay_score_cumulative = utils.preprocess_score_cumulative(home_replay_score_cumulative)
home_replay_feature_screen_array = np.array([home_replay_feature_screen])
home_replay_feature_minimap_array = np.array([home_replay_feature_minimap])
home_replay_player_array = np.array([home_replay_player])
home_replay_feature_units_array = np.array([home_replay_feature_units])
home_replay_available_actions_array = np.array([home_replay_available_actions])
home_replay_game_loop_array = np.array([home_replay_game_loop])
last_action_type_array = np.array([last_action_type])
home_replay_build_queue_array = np.array([home_replay_build_queue])
home_replay_single_select_array = np.array([home_replay_single_select])
home_replay_multi_select_array = np.array([home_replay_multi_select])
home_replay_score_cumulative_array = np.array([home_replay_score_cumulative])
home_replay_actions = replay['home_action'][sample_idx]
home_replay_action = random.choice(home_replay_actions)
home_replay_fn_id = int(home_replay_action[0])
home_replay_feature_screen_list.append(home_replay_feature_screen_array[0])
home_replay_feature_minimap_list.append(home_replay_feature_minimap_array[0])
home_replay_player_list.append(home_replay_player_array[0])
home_replay_feature_units_list.append(home_replay_feature_units_array[0])
home_replay_available_actions_list.append(home_replay_available_actions_array[0])
home_replay_game_loop_list.append(home_replay_game_loop_array[0])
last_action_type_list.append(np.array([last_action_type[0]]))
home_replay_build_queue_list.append(home_replay_build_queue_array[0])
home_replay_single_select_list.append(home_replay_single_select_array[0])
home_replay_multi_select_list.append(home_replay_multi_select_array[0])
home_replay_score_cumulative_list.append(home_replay_score_cumulative_array[0])
home_replay_args_ids = dict()
for arg_type in actions.TYPES:
home_replay_args_ids[arg_type] = -1
arg_index = 0
for arg_type in FUNCTIONS._func_list[home_replay_fn_id].args:
home_replay_args_ids[arg_type] = home_replay_action[1][arg_index]
arg_index += 1
last_action_type = [home_replay_fn_id]
home_replay_fn_id_list.append([home_replay_fn_id])
home_replay_arg_id_list = []
for arg_type in home_replay_args_ids.keys():
arg_id = home_replay_args_ids[arg_type]
if type(arg_id) == list:
if len(arg_id) == 2:
arg_id = arg_id[0] + arg_id[1] * feature_screen_size
else:
arg_id = int(arg_id[0])
home_replay_arg_id_list.append(arg_id)
home_replay_arg_ids_list.append(np.array(home_replay_arg_id_list))
if sample_idx == replay_file_length - 1:
home_replay_done = True
if home_replay_done == True:
yield (home_replay_feature_screen_list, home_replay_feature_minimap_list,
home_replay_player_list, home_replay_feature_units_list,
home_replay_available_actions_list,
home_replay_fn_id_list, home_replay_arg_ids_list,
home_replay_game_loop_list, last_action_type_list,
home_replay_build_queue_list, home_replay_single_select_list,
home_replay_multi_select_list, home_replay_score_cumulative_list
)
home_replay_feature_screen_list, home_replay_feature_minimap_list = [], []
home_replay_player_list, home_replay_feature_units_list = [], []
home_replay_available_actions_list, last_action_type_list = [], []
home_replay_fn_id_list, home_replay_arg_ids_list = [], []
home_replay_game_loop_list, home_replay_build_queue_list = [], []
home_replay_single_select_list, home_replay_multi_select_list = [], []
home_replay_score_cumulative_list = []
break
def __new__(cls, num_trajectorys=3):
return tf.data.Dataset.from_generator(
cls._generator,
output_types=(tf.dtypes.float32, tf.dtypes.float32, tf.dtypes.float32,
tf.dtypes.float32, tf.dtypes.float32, tf.dtypes.int32,
tf.dtypes.int32, tf.dtypes.int32, tf.dtypes.int32,
tf.dtypes.float32, tf.dtypes.float32, tf.dtypes.float32,
tf.dtypes.float32),
args=(num_trajectorys,)
)
dataset = tf.data.Dataset.range(1).interleave(TrajetoryDataset,
num_parallel_calls=tf.data.experimental.AUTOTUNE).batch(1).prefetch(tf.data.experimental.AUTOTUNE)
cce = tf.keras.losses.CategoricalCrossentropy()
optimizer = tf.keras.optimizers.Adam(arguments.learning_rate)
@tf.function
def supervised_replay(replay_feature_screen_list, replay_feature_minimap_list,
replay_player_list, replay_feature_units_list,
replay_available_actions_list, replay_fn_id_list, replay_args_ids_list,
memory_state, carry_state,
replay_game_loop_list, last_action_type_list,
replay_build_queue_list, replay_single_select_list, replay_multi_select_list,
replay_score_cumulative_list):
replay_feature_screen_array = tf.concat(replay_feature_screen_list, 0)
replay_feature_minimap_array = tf.concat(replay_feature_minimap_list, 0)
replay_player_array = tf.concat(replay_player_list, 0)
replay_feature_units_array = tf.concat(replay_feature_units_list, 0)
replay_memory_state_array = tf.concat(memory_state, 0)
replay_carry_state_array = tf.concat(carry_state, 0)
replay_game_loop_array = tf.concat(replay_game_loop_list, 0)
last_action_type_array = tf.concat(last_action_type_list, 0)
replay_available_actions_array = tf.concat(replay_available_actions_list, 0)
replay_fn_id_array = tf.concat(replay_fn_id_list, 0)
replay_arg_ids_array = tf.concat(replay_args_ids_list, 0)
replay_build_queue_array = tf.concat(replay_build_queue_list, 0)
replay_single_select_array = tf.concat(replay_single_select_list, 0)
replay_multi_select_array = tf.concat(replay_multi_select_list, 0)
replay_score_cumulative_array = tf.concat(replay_score_cumulative_list, 0)
memory_state = replay_memory_state_array
carry_state = replay_carry_state_array
batch_size = replay_feature_screen_array.shape[0]
with tf.GradientTape() as tape:
fn_probs = tf.TensorArray(dtype=tf.float32, size=0, dynamic_size=True)
screen_arg_probs = tf.TensorArray(dtype=tf.float32, size=0, dynamic_size=True)
minimap_arg_probs = tf.TensorArray(dtype=tf.float32, size=0, dynamic_size=True)
screen2_arg_probs = tf.TensorArray(dtype=tf.float32, size=0, dynamic_size=True)
queued_arg_probs = tf.TensorArray(dtype=tf.float32, size=0, dynamic_size=True)
control_group_act_probs = tf.TensorArray(dtype=tf.float32, size=0, dynamic_size=True)
control_group_id_arg_probs = tf.TensorArray(dtype=tf.float32, size=0, dynamic_size=True)
select_point_act_probs = tf.TensorArray(dtype=tf.float32, size=0, dynamic_size=True)
select_add_arg_probs = tf.TensorArray(dtype=tf.float32, size=0, dynamic_size=True)
select_unit_act_arg_probs = tf.TensorArray(dtype=tf.float32, size=0, dynamic_size=True)
select_unit_id_arg_probs = tf.TensorArray(dtype=tf.float32, size=0, dynamic_size=True)
select_worker_arg_probs = tf.TensorArray(dtype=tf.float32, size=0, dynamic_size=True)
build_queue_id_arg_probs = tf.TensorArray(dtype=tf.float32, size=0, dynamic_size=True)
unload_id_arg_probs = tf.TensorArray(dtype=tf.float32, size=0, dynamic_size=True)
for i in tf.range(0, batch_size):
input_dict = {'feature_screen': tf.expand_dims(replay_feature_screen_array[i,:,:,:], 0),
'feature_minimap': tf.expand_dims(replay_feature_minimap_array[i,:,:,:], 0),
'player': tf.expand_dims(replay_player_array[i,:], 0),
'feature_units': tf.expand_dims(replay_feature_units_array[i,:,:], 0),
'memory_state': memory_state, 'carry_state': carry_state,
'game_loop': tf.expand_dims(replay_game_loop_array[i,:], 0),
'available_actions': tf.expand_dims(replay_available_actions_array[i,:], 0),
'last_action_type': tf.expand_dims(last_action_type_array[i,:], 0),
'build_queue': tf.expand_dims(replay_build_queue_array[i], 0),
'single_select': tf.expand_dims(replay_single_select_array[i], 0),
'multi_select': tf.expand_dims(replay_multi_select_array[i], 0),
'score_cumulative': tf.expand_dims(replay_score_cumulative_array[i], 0)}
prediction = model(input_dict, training=True)
fn_pi = prediction['fn_out']
args_pi = prediction['args_out']
memory_state = prediction['final_memory_state']
carry_state = prediction['final_carry_state']
fn_probs = fn_probs.write(i, fn_pi[0])
arg_ids_loss = 0
for index, arg_type in enumerate(actions.TYPES):
if arg_type.name == 'screen':
screen_arg_probs = screen_arg_probs.write(i, args_pi[arg_type][0])
elif arg_type.name == 'minimap':
minimap_arg_probs = minimap_arg_probs.write(i, args_pi[arg_type][0])
elif arg_type.name == 'screen2':
screen2_arg_probs = screen2_arg_probs.write(i, args_pi[arg_type][0])
elif arg_type.name == 'queued':
queued_arg_probs = queued_arg_probs.write(i, args_pi[arg_type][0])
elif arg_type.name == 'control_group_act':
control_group_act_probs = control_group_act_probs.write(i, args_pi[arg_type][0])
elif arg_type.name == 'control_group_id':
control_group_id_arg_probs = control_group_id_arg_probs.write(i, args_pi[arg_type][0])
elif arg_type.name == 'select_point_act':
select_point_act_probs = select_point_act_probs.write(i, args_pi[arg_type][0])
elif arg_type.name == 'select_add':
select_add_arg_probs = select_add_arg_probs.write(i, args_pi[arg_type][0])
elif arg_type.name == 'select_unit_act':
select_unit_act_arg_probs = select_unit_act_arg_probs.write(i, args_pi[arg_type][0])
elif arg_type.name == 'select_unit_id':
select_unit_id_arg_probs = select_unit_id_arg_probs.write(i, args_pi[arg_type][0])
elif arg_type.name == 'select_worker':
select_worker_arg_probs = select_worker_arg_probs.write(i, args_pi[arg_type][0])
elif arg_type.name == 'build_queue_id':
build_queue_id_arg_probs = build_queue_id_arg_probs.write(i, args_pi[arg_type][0])
elif arg_type.name == 'unload_id':
unload_id_arg_probs = unload_id_arg_probs.write(i, args_pi[arg_type][0])
fn_probs = fn_probs.stack()
screen_arg_probs = screen_arg_probs.stack()
minimap_arg_probs = minimap_arg_probs.stack()
screen2_arg_probs = screen2_arg_probs.stack()
queued_arg_probs = queued_arg_probs.stack()
control_group_act_probs = control_group_act_probs.stack()
control_group_id_arg_probs = control_group_id_arg_probs.stack()
select_point_act_probs = select_point_act_probs.stack()
select_add_arg_probs = select_add_arg_probs.stack()
select_unit_act_arg_probs = select_unit_act_arg_probs.stack()
select_unit_id_arg_probs = select_unit_id_arg_probs.stack()
select_worker_arg_probs = select_worker_arg_probs.stack()
build_queue_id_arg_probs = build_queue_id_arg_probs.stack()
unload_id_arg_probs = unload_id_arg_probs.stack()
tf.print("replay_fn_id_array: ", replay_fn_id_array)
tf.print("tf.argmax(fn_probs, 1): ", tf.argmax(fn_probs, 1))
replay_fn_id_array_onehot = tf.one_hot(replay_fn_id_array, 573)
replay_fn_id_array_onehot = tf.reshape(replay_fn_id_array_onehot, (batch_size, 573))
replay_fn_id_array_onehot *= replay_available_actions_array
fn_id_loss = cce(replay_fn_id_array_onehot, fn_probs)
arg_ids_loss = 0
for index, arg_type in enumerate(actions.TYPES):
if arg_type.name == 'screen':
replay_arg_id = replay_arg_ids_array[:,index]
replay_arg_id_array_onehot = tf.one_hot(replay_arg_id, screen_arg_probs.shape[1])
screen_arg_loss = cce(replay_arg_id_array_onehot, screen_arg_probs)
#tf.print("screen_arg_loss: ", screen_arg_loss)
arg_ids_loss += screen_arg_loss
elif arg_type.name == 'minimap':
replay_arg_id = replay_arg_ids_array[:,index]
replay_arg_id_array_onehot = tf.one_hot(replay_arg_id, minimap_arg_probs.shape[1])
minimap_arg_loss = cce(replay_arg_id_array_onehot, minimap_arg_probs)
#tf.print("minimap_arg_loss: ", minimap_arg_loss)
arg_ids_loss += minimap_arg_loss
elif arg_type.name == 'screen2':
replay_arg_id = replay_arg_ids_array[:,index]
replay_arg_id_array_onehot = tf.one_hot(replay_arg_id, screen2_arg_probs.shape[1])
screen2_arg_loss = cce(replay_arg_id_array_onehot, screen2_arg_probs)
#tf.print("screen2_arg_loss: ", screen2_arg_loss)
arg_ids_loss += screen2_arg_loss
elif arg_type.name == 'queued':
replay_arg_id = replay_arg_ids_array[:,index]
replay_arg_id_array_onehot = tf.one_hot(replay_arg_id, queued_arg_probs.shape[1])
queued_arg_loss = cce(replay_arg_id_array_onehot, queued_arg_probs)
#tf.print("queued_arg_loss: ", queued_arg_loss)
arg_ids_loss += queued_arg_loss
elif arg_type.name == 'control_group_act':
replay_arg_id = replay_arg_ids_array[:,index]
replay_arg_id_array_onehot = tf.one_hot(replay_arg_id, control_group_act_probs.shape[1])
control_group_act_loss = cce(replay_arg_id_array_onehot, control_group_act_probs)
#tf.print("control_group_act_loss: ", control_group_act_loss)
arg_ids_loss += control_group_act_loss
elif arg_type.name == 'control_group_id':
replay_arg_id = replay_arg_ids_array[:,index]
replay_arg_id_array_onehot = tf.one_hot(replay_arg_id, control_group_id_arg_probs.shape[1])
control_group_id_arg_loss = cce(replay_arg_id_array_onehot, control_group_id_arg_probs)
#tf.print("control_group_id_arg_loss: ", control_group_id_arg_loss)
arg_ids_loss += control_group_id_arg_loss
elif arg_type.name == 'select_point_act':
replay_arg_id = replay_arg_ids_array[:,index]
replay_arg_id_array_onehot = tf.one_hot(replay_arg_id, select_point_act_probs.shape[1])
select_point_act_loss = cce(replay_arg_id_array_onehot, select_point_act_probs)
#tf.print("select_point_act_loss: ", select_point_act_loss)
arg_ids_loss += select_point_act_loss
elif arg_type.name == 'select_add':
replay_arg_id = replay_arg_ids_array[:,index]
replay_arg_id_array_onehot = tf.one_hot(replay_arg_id, select_add_arg_probs.shape[1])
select_add_arg_loss = cce(replay_arg_id_array_onehot, select_add_arg_probs)
#tf.print("select_add_arg_loss: ", select_add_arg_loss)
arg_ids_loss += select_add_arg_loss
elif arg_type.name == 'select_unit_act':
replay_arg_id = replay_arg_ids_array[:,index]
replay_arg_id_array_onehot = tf.one_hot(replay_arg_id, select_unit_act_arg_probs.shape[1])
select_unit_act_arg_loss = cce(replay_arg_id_array_onehot, select_unit_act_arg_probs)
#tf.print("select_unit_act_arg_loss: ", select_unit_act_arg_loss)
arg_ids_loss += select_unit_act_arg_loss
elif arg_type.name == 'select_unit_id':
replay_arg_id = replay_arg_ids_array[:,index]
replay_arg_id_array_onehot = tf.one_hot(replay_arg_id, select_unit_id_arg_probs.shape[1])
select_unit_id_arg_loss = cce(replay_arg_id_array_onehot, select_unit_id_arg_probs)
#tf.print("select_unit_id_arg_loss: ", select_unit_id_arg_loss)
arg_ids_loss += select_unit_id_arg_loss
elif arg_type.name == 'select_worker':
replay_arg_id = replay_arg_ids_array[:,index]
replay_arg_id_array_onehot = tf.one_hot(replay_arg_id, select_worker_arg_probs.shape[1])
select_worker_arg_loss = cce(replay_arg_id_array_onehot, select_worker_arg_probs)
#tf.print("select_worker_arg_loss: ", select_worker_arg_loss)
arg_ids_loss += select_worker_arg_loss
elif arg_type.name == 'build_queue_id':
replay_arg_id = replay_arg_ids_array[:,index]
replay_arg_id_array_onehot = tf.one_hot(replay_arg_id, build_queue_id_arg_probs.shape[1])
build_queue_id_arg_loss = cce(replay_arg_id_array_onehot, build_queue_id_arg_probs)
#tf.print("build_queue_id_arg_loss: ", build_queue_id_arg_loss)
arg_ids_loss += build_queue_id_arg_loss
elif arg_type.name == 'unload_id':
replay_arg_id = replay_arg_ids_array[:,index]
replay_arg_id_array_onehot = tf.one_hot(replay_arg_id, unload_id_arg_probs.shape[1])
unload_id_arg_loss = cce(replay_arg_id_array_onehot, unload_id_arg_probs)
#tf.print("unload_id_arg_loss: ", unload_id_arg_loss)
arg_ids_loss += unload_id_arg_loss
tf.print("fn_id_loss: ", fn_id_loss)
tf.print("arg_ids_loss: ", arg_ids_loss)
regularization_loss = tf.reduce_sum(model.losses)
total_loss = fn_id_loss + arg_ids_loss + 1e-5 * regularization_loss
tf.print("")
grads = tape.gradient(total_loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
return total_loss, memory_state, carry_state
def supervised_train(dataset, training_episode):
def iter_dataset(_dataset):
dataset_iterator = iter(_dataset)
while True:
yield next(dataset_iterator)
training_step = 0
for batch in dataset:
episode_size = batch[0].shape[1]
replay_feature_screen_list = batch[0][0]
replay_feature_minimap_list = batch[1][0]
replay_player_list = batch[2][0]
replay_feature_units_list = batch[3][0]
replay_available_actions_list = batch[4][0]
replay_fn_id_list = batch[5][0]
replay_args_ids_list = batch[6][0]
replay_game_loop_list = batch[7][0]
replay_last_action_type_list = batch[8][0]
replay_build_queue_list = batch[9][0]
replay_single_select_list = batch[10][0]
replay_multi_select_list = batch[11][0]
replay_score_cumulative_list = batch[12][0]
memory_state = np.zeros([1,1024], dtype=np.float32)
carry_state = np.zeros([1,1024], dtype=np.float32)
step_length = 8
for episode_index in range(0, episode_size, step_length):
feature_screen = replay_feature_screen_list[episode_index:episode_index+step_length,:,:,:]
feature_minimap = replay_feature_minimap_list[episode_index:episode_index+step_length,:,:,:]
player = replay_player_list[episode_index:episode_index+step_length,:]
feature_units = replay_feature_units_list[episode_index:episode_index+step_length,:,:]
available_actions = replay_available_actions_list[episode_index:episode_index+step_length,:]
fn_id_list = replay_fn_id_list[episode_index:episode_index+step_length,:]
args_ids = replay_args_ids_list[episode_index:episode_index+step_length,:]
game_loop = replay_game_loop_list[episode_index:episode_index+step_length,:]
last_action_type = replay_last_action_type_list[episode_index:episode_index+step_length,:]
build_queue = replay_build_queue_list[episode_index:episode_index+step_length]
single_select = replay_single_select_list[episode_index:episode_index+step_length]
multi_select = replay_multi_select_list[episode_index:episode_index+step_length]
score_cumulative = replay_score_cumulative_list[episode_index:episode_index+step_length]
if arguments.training == True and len(feature_screen) == step_length:
total_loss, next_memory_state, next_carry_state = supervised_replay(feature_screen, feature_minimap,
player, feature_units,
available_actions, fn_id_list, args_ids,
memory_state, carry_state,
game_loop, last_action_type,
build_queue, single_select,
multi_select, score_cumulative)
memory_state = next_memory_state
carry_state = next_carry_state
training_step += 1
print("training_step: {}".format(training_step))
if training_step % 250 == 0:
with writer.as_default():
tf.summary.scalar("total_loss", total_loss, step=training_step)
writer.flush()
if training_step % 5000 == 0:
model.save_weights(workspace_path + '/Models/supervised_model_' + str(training_step / 10000))
def main():
supervised_train(dataset, arguments.training_episode)
if __name__ == "__main__":
main()