-
Notifications
You must be signed in to change notification settings - Fork 2
/
qg_basin.py
171 lines (132 loc) · 5.33 KB
/
qg_basin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import sys, slepc4py
slepc4py.init(sys.argv)
from petsc4py import PETSc
from slepc4py import SLEPc
import numpy as np
import scipy as sc
import scipy.sparse as sp
import matplotlib.pyplot as plt
Print = PETSc.Sys.Print
def fd2(N):
if N==0: D=0; x=1; return
x = np.linspace(-1,1,N+1) #double check syntax
h = 2./N
e = np.ones(N+1)
data = np.array([-1*e, 0*e, e])/(2*h)
D = sp.spdiags(data, [-1, 0, 1], N+1,N+1)
D = sp.csr_matrix(D)
D[0, 0:2] = np.array([-1, 1])/h
D[N, N-1:N+1] = np.array([-1, 1])/h
D2 = sp.spdiags(np.array([e, -2*e, e])/h**2, [-1, 0, 1], N+1, N+1)
D2 = sp.csr_matrix(D2)
D2[0, 0:3] = np.array([1, -2, 1])/h**2
D2[N, N-2:N+1] = np.array([1,-2,1])/h**2
return D, D2, x
def petscKron(A,B):
dim = A.shape[0]*B.shape[0] # length of resulting matrix
# Used to get indexes where values are non-zero
Br,Bc = np.nonzero(B)
Ar,Ac = np.nonzero(A)
# Need to have values on first axis
Ar = np.asarray(Ar).ravel(); Ac = np.asarray(Ac).ravel()
Br = np.asarray(Br).ravel(); Bc = np.asarray(Bc).ravel()
# Distance between each 'block'
n = B.shape[1]
# create petsc resulting matrix
K = PETSc.Mat().createAIJ([dim,dim])
K.setFromOptions(); K.setUp()
start,end = K.getOwnershipRange()
for i in xrange(len(Ar)): # Go through each non-zero value in A
# br,bc are used to track which 'block' we're in (in result matrix)
br,bc = n*Ar[i], n*Ac[i]
for j in xrange(len(Br)): # Go through non-zero values in B
# kr,kc used to see where to put the number in K (the indexs)
kr = (Br[j]+br).astype(np.int32)
kc = (Bc[j]+bc).astype(np.int32)
if start <= kr < end: # Make sure we're in the correct processor
K[kr, kc] = A[Ar[i],Ac[i]] * B[Br[j],Bc[j]]
K.assemble()
return K
if __name__ == '__main__':
opts = PETSc.Options()
nEV = opts.getInt('nev', 10)
Nx = opts.getInt('Nx',40)
Ny = opts.getInt('Ny',40)
nmodes = opts.getInt('nm',1)
H = 5e2 # Fluid Depth
beta = 2e-11 # beta parameter
f0 = 2*np.pi/(3600*24) # Mean Coriolis parameters
g = 9.81 # gravity
Lx = np.sqrt(2)*1e6 # Zonal Length
Ly = 1e6 # Meridional Length
[Dx,Dx2,x] = fd2(Nx); [Dy,Dy2,y] = fd2(Ny)
x = Lx/2*x; y = Ly/2*y
Dx = 2/Lx*Dx; Dy = 2/Ly*Dy
Dx2 = (2/Lx)**2*Dx2; Dy2 = (2/Ly)**2*Dy2
xx,yy = np.meshgrid(x[1:Nx], y[1:Ny])
xx = np.reshape(xx,(Nx-1)*(Ny-1), order='F')
yy = np.reshape(yy,(Nx-1)*(Ny-1), order='F')
Ix = np.eye(Nx-1)
Iy = np.eye(Ny-1)
Dx = Dx[1:Nx,1:Nx]
Dy2 = Dy2[1:Ny,1:Ny]
Dx2 = Dx2[1:Nx,1:Nx]
Dxv = petscKron(Dx,Iy)
Lapv = petscKron(Ix, Dy2) + petscKron(Dx2,Iy)
A = beta*Dxv
B = f0**2/(g*H)*petscKron(Ix,Iy) - Lapv
# start,end = B.getOwnershipRange()
# for i in range(start,end):
# print B[i,:]
E = SLEPc.EPS().create(comm=SLEPc.COMM_WORLD)
E.setOperators(A,B)
E.setDimensions(nEV,PETSc.DECIDE)
E.setProblemType(SLEPc.EPS.ProblemType.GNHEP); E.setFromOptions()
E.setWhichEigenpairs(SLEPc.EPS.Which.LARGEST_IMAGINARY)
E.solve()
nconv = E.getConverged()
vr, wr = A.getVecs()
vi, wi = A.getVecs()
if nmodes > nconv: nmodes = nconv
for i in xrange(0,nmodes):
eigVal = E.getEigenvalue(i)*1j
#print eigVal.real + eigVal.imag*1j
# If you have scalar-type complex for PETSc, use this code
# If you have scalar-type real (default) for PETSc,
# get rid of all real. and imag., replace the ones that had .imag
# with vi2d instead of vr2d
E.getEigenvector(i,vr,vi) # Note: Both real and imaginary parts are in
# vr if you have complex petsc.
scatter, vrSeq = PETSc.Scatter.toZero(vr)
im = PETSc.InsertMode.INSERT_VALUES
sm = PETSc.ScatterMode.FORWARD
scatter.scatter(vr,vrSeq,im,sm)
rank = PETSc.COMM_WORLD.getRank()
if rank == 0:
mode = np.empty(vr.getSize(),dtype='complex')
for i in xrange(0,vrSeq.getSize()):
mode[i] = vrSeq[i].real+vrSeq[i].imag*1j
lvlr = np.linspace(mode.real.min(),mode.real.max(),20)
lvli = np.linspace(mode.imag.min(),mode.imag.max(),20)
mode = mode.reshape([Ny-1,Ny-1],order='F')
plt.subplot(1,2,1)
plt.contourf(mode.real,levels=lvlr)
plt.title('real(psi)')
plt.subplot(1,2,2)
plt.contourf(mode.imag,levels=lvli)
plt.title('imag(psi)')
plt.colorbar(extend='both')
fig = "QG_Basin_m%d" % i
plt.savefig(fig, format='eps', dpi=1000)
plt.show()
# vr2d = np.reshape(vr,[Ny-1,Ny-1],order='F')
# vi2d = np.reshape(vi,[Ny-1,Ny-1],order='F')
# lvlr = np.linspace(vr2d.real.min(),vr2d.real.max(),20)
# lvli = np.linspace(vr2d.imag.min(),vr2d.imag.max(),20)
# plt.subplot(1,2,1)
# plt.contourf(vr2d.real,levels=lvlr)
# plt.title('real(psi)')
# plt.subplot(1,2,2)
# plt.contourf(vr2d[:].imag,levels=lvli)
# plt.title('imag(psi)')
# plt.show()