From 590960123fd73a616bec6ddde75e242882846e3f Mon Sep 17 00:00:00 2001 From: Tom Gustafsson Date: Mon, 2 Aug 2021 14:26:34 +0300 Subject: [PATCH] Bump up version number --- README.md | 16 +++++++--------- setup.cfg | 3 +-- 2 files changed, 8 insertions(+), 11 deletions(-) diff --git a/README.md b/README.md index 453498edd..613e806ba 100644 --- a/README.md +++ b/README.md @@ -4,7 +4,6 @@

- @@ -30,14 +29,10 @@ The most recent release can be installed simply by ``` pip install scikit-fem ``` -or -``` -conda install -c conda-forge scikit-fem -``` ## Examples -Solve the Poisson problem (see also [`ex01.py`](docs/examples/ex01.py)): +Solve the Poisson problem (see also [`ex01.py`](https://github.com/kinnala/scikit-fem/blob/master/docs/examples/ex01.py)): ```python from skfem import * from skfem.helpers import dot, grad @@ -227,9 +222,8 @@ e.g., to ensure reproducibility. ## In literature The library has been used in the preparation of the following scientific works. -Feel free to add your publication to the list. -- Gustafsson, T. & Videman, J. (2021). Stabilized finite elements for Tresca friction problem. arXiv preprint [https://arxiv.org/abs/2106.12165](https://arxiv.org/abs/2106.12165). +- Gustafsson, T. & Videman, J. (2021). Stabilized finite elements for Tresca friction problem. arXiv preprint [arxiv:2106.12165](https://arxiv.org/abs/2106.12165). - Gustafsson, T. (2020). A simple technique for unstructured mesh generation via adaptive finite elements. arXiv preprint [arXiv:2011.07919](https://arxiv.org/abs/2011.07919). - Huang, X., Shi, Y., & Wang, W. (2020). A Morley-Wang-Xu element method for a fourth order elliptic singular perturbation problem. arXiv preprint [arXiv:2011.14064](https://arxiv.org/abs/2011.14064). - Gustafsson, T., Stenberg, R., & Videman, J. (2020). Nitsche's method for Kirchhoff plates. arXiv preprint [arXiv:2007.00403](https://arxiv.org/abs/2007.00403). @@ -246,6 +240,8 @@ Feel free to add your publication to the list. - Gustafsson, T., Stenberg, R., & Videman, J. (2017). Nitsche’s Method for the Obstacle Problem of Clamped Kirchhoff Plates. In European Conference on Numerical Mathematics and Advanced Applications, 407–415. Springer. - Gustafsson, T., Stenberg, R., & Videman, J. (2017). A posteriori analysis of classical plate elements. Rakenteiden Mekaniikka, 50(3), 141–145. [Open access](https://rakenteidenmekaniikka.journal.fi/article/view/65004/26450). +Feel free to open a PR to add your publication to the list. + ## Changelog The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), @@ -254,11 +250,13 @@ with respect to documented and/or tested features. ### Unreleased +### [3.2.0] - 2021-08-02 + - Added: `ElementTriCCR` and `ElementTetCCR`, conforming Crouzeix-Raviart finite elements - Fixed: `Mesh.mirrored` returned a wrong mesh when a point other than the origin was used - Fixed: `MeshLine` constructor accepted only NumPy arrays and not plain Python lists - Fixed: `Mesh.element_finder` (and `CellBasis.probes`, `CellBasis.interpolator`) was not working properly for a small number of elements (<5) or a large number of input points (>1000) -- Fixed: `MeshTet` and `MeshTri.element_finder` is are now more robust against degenerate elements +- Fixed: `MeshTet` and `MeshTri.element_finder` are now more robust against degenerate elements - Fixed: `Mesh.element_finder` (and `CellBasis.probes`, `CellBasis.interpolator`) raises exception if the query point is outside of the domain ### [3.1.0] - 2021-06-18 diff --git a/setup.cfg b/setup.cfg index 4632b8e0e..f189590e3 100644 --- a/setup.cfg +++ b/setup.cfg @@ -1,6 +1,6 @@ [metadata] name = scikit-fem -version = 3.1.0 +version = 3.2.0 author = Tom Gustafsson description = Simple finite element assemblers url = https://github.com/kinnala/scikit-fem @@ -17,7 +17,6 @@ classifiers = License :: OSI Approved :: BSD License Programming Language :: Python Programming Language :: Python :: 3 - Programming Language :: Python :: 3.6 Programming Language :: Python :: 3.7 Programming Language :: Python :: 3.8 Programming Language :: Python :: 3.9