-
-
Notifications
You must be signed in to change notification settings - Fork 309
/
alphanum.hpp
459 lines (407 loc) · 13.5 KB
/
alphanum.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
#ifndef ALPHANUM__HPP
#define ALPHANUM__HPP
/*
The Alphanum Algorithm is an improved sorting algorithm for strings
containing numbers. Instead of sorting numbers in ASCII order like a
standard sort, this algorithm sorts numbers in numeric order.
The Alphanum Algorithm is discussed at http://www.DaveKoelle.com
This implementation is Copyright (c) 2008 Dirk Jagdmann <[email protected]>.
It is a cleanroom implementation of the algorithm and not derived by
other's works. In contrast to the versions written by Dave Koelle this
source code is distributed with the libpng/zlib license.
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you
must not claim that you wrote the original software. If you use
this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and
must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source
distribution. */
/* $Header: /code/doj/alphanum.hpp,v 1.3 2008/01/28 23:06:47 doj Exp $ */
#include <cassert>
#include <functional>
#include <string>
#include <sstream>
#ifdef ALPHANUM_LOCALE
#include <cctype>
#endif
#ifdef DOJDEBUG
#include <iostream>
#include <typeinfo>
#endif
// TODO: make comparison with hexadecimal numbers. Extend the alphanum_comp() function by traits to choose between decimal and hexadecimal.
namespace doj
{
// anonymous namespace for functions we use internally. But if you
// are coding in C, you can use alphanum_impl() directly, since it
// uses not C++ features.
namespace {
// if you want to honour the locale settings for detecting digit
// characters, you should define ALPHANUM_LOCALE
#ifdef ALPHANUM_LOCALE
/** wrapper function for ::isdigit() */
bool alphanum_isdigit(int c)
{
return isdigit(c);
}
#else
/** this function does not consider the current locale and only
works with ASCII digits.
@return true if c is a digit character
*/
bool alphanum_isdigit(const char c)
{
return c>='0' && c<='9';
}
#endif
/**
compare l and r with strcmp() semantics, but using
the "Alphanum Algorithm". This function is designed to read
through the l and r strings only one time, for
maximum performance. It does not allocate memory for
substrings. It can either use the C-library functions isdigit()
and atoi() to honour your locale settings, when recognizing
digit characters when you "#define ALPHANUM_LOCALE=1" or use
it's own digit character handling which only works with ASCII
digit characters, but provides better performance.
@param l NULL-terminated C-style string
@param r NULL-terminated C-style string
@return negative if l<r, 0 if l equals r, positive if l>r
*/
int alphanum_impl(const char *l, const char *r)
{
enum mode_t { STRING, NUMBER } mode=STRING;
while(*l && *r)
{
if(mode == STRING)
{
char l_char, r_char;
while((l_char=*l) && (r_char=*r))
{
// check if this are digit characters
const bool l_digit=alphanum_isdigit(l_char), r_digit=alphanum_isdigit(r_char);
// if both characters are digits, we continue in NUMBER mode
if(l_digit && r_digit)
{
mode=NUMBER;
break;
}
// if only the left character is a digit, we have a result
if(l_digit) return -1;
// if only the right character is a digit, we have a result
if(r_digit) return +1;
// compute the difference of both characters
const int diff=l_char - r_char;
// if they differ we have a result
if(diff != 0) return diff;
// otherwise process the next characters
++l;
++r;
}
}
else // mode==NUMBER
{
#ifdef ALPHANUM_LOCALE
// get the left number
char *end;
unsigned long l_int=strtoul(l, &end, 0);
l=end;
// get the right number
unsigned long r_int=strtoul(r, &end, 0);
r=end;
#else
// get the left number
unsigned long l_int=0;
while(*l && alphanum_isdigit(*l))
{
// TODO: this can overflow
l_int=l_int*10 + *l-'0';
++l;
}
// get the right number
unsigned long r_int=0;
while(*r && alphanum_isdigit(*r))
{
// TODO: this can overflow
r_int=r_int*10 + *r-'0';
++r;
}
#endif
// if the difference is not equal to zero, we have a comparison result
const long diff=l_int-r_int;
if(diff != 0)
return diff;
// otherwise we process the next substring in STRING mode
mode=STRING;
}
}
if(*r) return -1;
if(*l) return +1;
return 0;
}
}
/**
Compare left and right with the same semantics as strcmp(), but with the
"Alphanum Algorithm" which produces more human-friendly
results. The classes lT and rT must implement "std::ostream
operator<< (std::ostream&, const Ty&)".
@return negative if left<right, 0 if left==right, positive if left>right.
*/
template <typename lT, typename rT>
int alphanum_comp(const lT& left, const rT& right)
{
#ifdef DOJDEBUG
std::clog << "alphanum_comp<" << typeid(left).name() << "," << typeid(right).name() << "> " << left << "," << right << std::endl;
#endif
std::ostringstream l; l << left;
std::ostringstream r; r << right;
return alphanum_impl(l.str().c_str(), r.str().c_str());
}
/**
Compare l and r with the same semantics as strcmp(), but with
the "Alphanum Algorithm" which produces more human-friendly
results.
@return negative if l<r, 0 if l==r, positive if l>r.
*/
template <>
int alphanum_comp<std::string>(const std::string& l, const std::string& r)
{
#ifdef DOJDEBUG
std::clog << "alphanum_comp<std::string,std::string> " << l << "," << r << std::endl;
#endif
return alphanum_impl(l.c_str(), r.c_str());
}
////////////////////////////////////////////////////////////////////////////
// now follow a lot of overloaded alphanum_comp() functions to get a
// direct call to alphanum_impl() upon the various combinations of c
// and c++ strings.
/**
Compare l and r with the same semantics as strcmp(), but with
the "Alphanum Algorithm" which produces more human-friendly
results.
@return negative if l<r, 0 if l==r, positive if l>r.
*/
int alphanum_comp(char* l, char* r)
{
assert(l);
assert(r);
#ifdef DOJDEBUG
std::clog << "alphanum_comp<char*,char*> " << l << "," << r << std::endl;
#endif
return alphanum_impl(l, r);
}
int alphanum_comp(const char* l, const char* r)
{
assert(l);
assert(r);
#ifdef DOJDEBUG
std::clog << "alphanum_comp<const char*,const char*> " << l << "," << r << std::endl;
#endif
return alphanum_impl(l, r);
}
int alphanum_comp(char* l, const char* r)
{
assert(l);
assert(r);
#ifdef DOJDEBUG
std::clog << "alphanum_comp<char*,const char*> " << l << "," << r << std::endl;
#endif
return alphanum_impl(l, r);
}
int alphanum_comp(const char* l, char* r)
{
assert(l);
assert(r);
#ifdef DOJDEBUG
std::clog << "alphanum_comp<const char*,char*> " << l << "," << r << std::endl;
#endif
return alphanum_impl(l, r);
}
int alphanum_comp(const std::string& l, char* r)
{
assert(r);
#ifdef DOJDEBUG
std::clog << "alphanum_comp<std::string,char*> " << l << "," << r << std::endl;
#endif
return alphanum_impl(l.c_str(), r);
}
int alphanum_comp(char* l, const std::string& r)
{
assert(l);
#ifdef DOJDEBUG
std::clog << "alphanum_comp<char*,std::string> " << l << "," << r << std::endl;
#endif
return alphanum_impl(l, r.c_str());
}
int alphanum_comp(const std::string& l, const char* r)
{
assert(r);
#ifdef DOJDEBUG
std::clog << "alphanum_comp<std::string,const char*> " << l << "," << r << std::endl;
#endif
return alphanum_impl(l.c_str(), r);
}
int alphanum_comp(const char* l, const std::string& r)
{
assert(l);
#ifdef DOJDEBUG
std::clog << "alphanum_comp<const char*,std::string> " << l << "," << r << std::endl;
#endif
return alphanum_impl(l, r.c_str());
}
////////////////////////////////////////////////////////////////////////////
/**
Functor class to compare two objects with the "Alphanum
Algorithm". If the objects are no std::string, they must
implement "std::ostream operator<< (std::ostream&, const Ty&)".
*/
template<class Ty>
struct alphanum_less
{
bool operator()(const Ty& left, const Ty& right) const
{
return alphanum_comp(left, right) < 0;
}
};
}
#ifdef TESTMAIN
#include <algorithm>
#include <iostream>
#include <iterator>
#include <map>
#include <set>
#include <vector>
int main()
{
// testcases for the algorithm
assert(doj::alphanum_comp("","") == 0);
assert(doj::alphanum_comp("","a") < 0);
assert(doj::alphanum_comp("a","") > 0);
assert(doj::alphanum_comp("a","a") == 0);
assert(doj::alphanum_comp("","9") < 0);
assert(doj::alphanum_comp("9","") > 0);
assert(doj::alphanum_comp("1","1") == 0);
assert(doj::alphanum_comp("1","2") < 0);
assert(doj::alphanum_comp("3","2") > 0);
assert(doj::alphanum_comp("a1","a1") == 0);
assert(doj::alphanum_comp("a1","a2") < 0);
assert(doj::alphanum_comp("a2","a1") > 0);
assert(doj::alphanum_comp("a1a2","a1a3") < 0);
assert(doj::alphanum_comp("a1a2","a1a0") > 0);
assert(doj::alphanum_comp("134","122") > 0);
assert(doj::alphanum_comp("12a3","12a3") == 0);
assert(doj::alphanum_comp("12a1","12a0") > 0);
assert(doj::alphanum_comp("12a1","12a2") < 0);
assert(doj::alphanum_comp("a","aa") < 0);
assert(doj::alphanum_comp("aaa","aa") > 0);
assert(doj::alphanum_comp("Alpha 2","Alpha 2") == 0);
assert(doj::alphanum_comp("Alpha 2","Alpha 2A") < 0);
assert(doj::alphanum_comp("Alpha 2 B","Alpha 2") > 0);
assert(doj::alphanum_comp(1,1) == 0);
assert(doj::alphanum_comp(1,2) < 0);
assert(doj::alphanum_comp(2,1) > 0);
assert(doj::alphanum_comp(1.2,3.14) < 0);
assert(doj::alphanum_comp(3.14,2.71) > 0);
assert(doj::alphanum_comp(true,true) == 0);
assert(doj::alphanum_comp(true,false) > 0);
assert(doj::alphanum_comp(false,true) < 0);
std::string str("Alpha 2");
assert(doj::alphanum_comp(str,"Alpha 2") == 0);
assert(doj::alphanum_comp(str,"Alpha 2A") < 0);
assert(doj::alphanum_comp("Alpha 2 B",str) > 0);
assert(doj::alphanum_comp(str,strdup("Alpha 2")) == 0);
assert(doj::alphanum_comp(str,strdup("Alpha 2A")) < 0);
assert(doj::alphanum_comp(strdup("Alpha 2 B"),str) > 0);
#if 1
// show usage of the comparison functor with a set
std::set<std::string, doj::alphanum_less<std::string> > s;
s.insert("Xiph Xlater 58");
s.insert("Xiph Xlater 5000");
s.insert("Xiph Xlater 500");
s.insert("Xiph Xlater 50");
s.insert("Xiph Xlater 5");
s.insert("Xiph Xlater 40");
s.insert("Xiph Xlater 300");
s.insert("Xiph Xlater 2000");
s.insert("Xiph Xlater 10000");
s.insert("QRS-62F Intrinsia Machine");
s.insert("QRS-62 Intrinsia Machine");
s.insert("QRS-60F Intrinsia Machine");
s.insert("QRS-60 Intrinsia Machine");
s.insert("Callisto Morphamax 7000 SE2");
s.insert("Callisto Morphamax 7000 SE");
s.insert("Callisto Morphamax 7000");
s.insert("Callisto Morphamax 700");
s.insert("Callisto Morphamax 600");
s.insert("Callisto Morphamax 5000");
s.insert("Callisto Morphamax 500");
s.insert("Callisto Morphamax");
s.insert("Alpha 2A-900");
s.insert("Alpha 2A-8000");
s.insert("Alpha 2A");
s.insert("Alpha 200");
s.insert("Alpha 2");
s.insert("Alpha 100");
s.insert("Allegia 60 Clasteron");
s.insert("Allegia 52 Clasteron");
s.insert("Allegia 51B Clasteron");
s.insert("Allegia 51 Clasteron");
s.insert("Allegia 500 Clasteron");
s.insert("Allegia 50 Clasteron");
s.insert("40X Radonius");
s.insert("30X Radonius");
s.insert("20X Radonius Prime");
s.insert("20X Radonius");
s.insert("200X Radonius");
s.insert("10X Radonius");
s.insert("1000X Radonius Maximus");
// print sorted set to cout
std::copy(s.begin(), s.end(), std::ostream_iterator<std::string>(std::cout, "\n"));
// show usage of comparison functor with a map
typedef std::map<std::string, int, doj::alphanum_less<std::string> > m_t;
m_t m;
m["z1.doc"]=1;
m["z10.doc"]=2;
m["z100.doc"]=3;
m["z101.doc"]=4;
m["z102.doc"]=5;
m["z11.doc"]=6;
m["z12.doc"]=7;
m["z13.doc"]=8;
m["z14.doc"]=9;
m["z15.doc"]=10;
m["z16.doc"]=11;
m["z17.doc"]=12;
m["z18.doc"]=13;
m["z19.doc"]=14;
m["z2.doc"]=15;
m["z20.doc"]=16;
m["z3.doc"]=17;
m["z4.doc"]=18;
m["z5.doc"]=19;
m["z6.doc"]=20;
m["z7.doc"]=21;
m["z8.doc"]=22;
m["z9.doc"]=23;
// print sorted map to cout
for(m_t::iterator i=m.begin(); i!=m.end(); ++i)
std::cout << i->first << '\t' << i->second << std::endl;
// show usage of comparison functor with an STL algorithm on a vector
std::vector<std::string> v;
// vector contents are reversed sorted contents of the old set
std::copy(s.rbegin(), s.rend(), std::back_inserter(v));
// now sort the vector with the algorithm
std::sort(v.begin(), v.end(), doj::alphanum_less<std::string>());
// and print the vector to cout
std::copy(v.begin(), v.end(), std::ostream_iterator<std::string>(std::cout, "\n"));
#endif
return 0;
}
#endif
#endif