-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
317 lines (257 loc) · 10.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import logging
from typing import Callable, Dict, Iterable, OrderedDict
import matplotlib.pyplot as plt
from omegaconf import DictConfig, OmegaConf
import torch
import torch.nn.functional as F
from torch import Tensor, nn
from torch.optim import Optimizer
from torch.utils.data import DataLoader
import wandb
from analysis import MetricValueMeter, MultiClassAccuracyMeter
from rule_learner import DNFBasedClassifier
from utils import (
load_full_cub_data,
get_dnf_classifier_x_and_y,
DeltaDelayedExponentialDecayScheduler,
load_partial_cub_data,
FULL_PKL_KEYS,
PARTIAL_PKL_KEYS,
)
log = logging.getLogger()
loss_func_map: Dict[str, Callable[[Tensor, Tensor], Tensor]] = {
"bce": lambda y_hat, y: torch.mean(
torch.sum(F.binary_cross_entropy(y_hat, y, reduction="none"), 1)
),
"ce": nn.CrossEntropyLoss(),
}
def get_full_cub_data_path_dict(env_cfg: DictConfig) -> Dict[str, str]:
for k in FULL_PKL_KEYS:
assert k in env_cfg
data_path_dict = {}
for k in FULL_PKL_KEYS:
data_path_dict[k] = env_cfg[k]
data_path_dict["cub_images_dir"] = env_cfg["cub_images_dir"]
return data_path_dict
def get_partial_cub_data_path_dict(
env_cfg: DictConfig, partial_cub_cfg: DictConfig
) -> Dict[str, str]:
for k in PARTIAL_PKL_KEYS:
assert k in partial_cub_cfg
data_path_dict = {}
for k in PARTIAL_PKL_KEYS:
data_path_dict[k] = partial_cub_cfg[k]
data_path_dict["cub_images_dir"] = env_cfg["cub_images_dir"]
return data_path_dict
class DnfClassifierTrainer:
# Data loaders
train_loader: DataLoader
val_loader: DataLoader
# Training parameters
use_cuda: bool
experiment_name: str
optimiser_key: str
optimiser_fn: Callable[[Iterable], Optimizer]
scheduler_fn: Callable
loss_func_key: str
criterion: Callable[[Tensor, Tensor], Tensor]
epochs: int
reg_fn: str
reg_lambda: float
# Delta decay scheduler
delta_decay_scheduler: DeltaDelayedExponentialDecayScheduler
delta_one_counter: int = -1
# Configs
cfg: DictConfig
model_train_cfg: DictConfig
def __init__(self, model_name: str, cfg: DictConfig) -> None:
# Configs
self.cfg = cfg
self.model_train_cfg = cfg["training"][model_name]
# Training parameters
self.use_cuda = (
cfg["training"]["use_cuda"] and torch.cuda.is_available()
)
self.experiment_name = cfg["training"]["experiment_name"]
# Data loaders
env_cfg = cfg["environment"]
use_partial_cub = cfg["training"]["use_partial_cub"]
partial_cub_cfg = cfg["training"]["partial_cub"]
batch_size = self.model_train_cfg["batch_size"]
if use_partial_cub:
# Use existing partial pkl files
self.train_loader, self.val_loader = load_partial_cub_data(
is_training=True,
batch_size=batch_size,
data_path_dict=get_partial_cub_data_path_dict(
env_cfg, partial_cub_cfg
),
use_img_tensor=False,
)
else:
self.train_loader, self.val_loader = load_full_cub_data(
is_training=True,
batch_size=batch_size,
data_path_dict=get_full_cub_data_path_dict(env_cfg),
use_img_tensor=False,
)
# Optimiser
lr = self.model_train_cfg["optimiser_lr"]
weight_decay = self.model_train_cfg["optimiser_weight_decay"]
self.optimiser_key = self.model_train_cfg["optimiser"]
if self.optimiser_key == "sgd":
self.optimiser_fn = lambda params: torch.optim.SGD(
params, lr=lr, momentum=0.9, weight_decay=weight_decay
)
else:
self.optimiser_fn = lambda params: torch.optim.Adam(
params, lr=lr, weight_decay=weight_decay
)
# Scheduler
scheduler_step = self.model_train_cfg["scheduler_step"]
self.scheduler_fn = lambda optimiser: torch.optim.lr_scheduler.StepLR(
optimiser, step_size=scheduler_step, gamma=0.1
)
# Loss function
self.loss_func_key = self.model_train_cfg["loss_func"]
self.criterion = loss_func_map[self.loss_func_key]
# Other training parameters
self.epochs = self.model_train_cfg["epochs"]
self.reg_fn = self.model_train_cfg["reg_fn"]
self.reg_lambda = self.model_train_cfg["reg_lambda"]
self.delta_decay_scheduler = DeltaDelayedExponentialDecayScheduler(
initial_delta=self.model_train_cfg["initial_delta"],
delta_decay_delay=self.model_train_cfg["delta_decay_delay"],
delta_decay_steps=self.model_train_cfg["delta_decay_steps"],
delta_decay_rate=self.model_train_cfg["delta_decay_rate"],
)
def train(self, model: DNFBasedClassifier) -> dict:
seed = torch.get_rng_state()[0].item()
log.info(f"{self.experiment_name} starts, seed: {seed}")
if self.use_cuda:
model.to("cuda")
optimiser = self.optimiser_fn(model.parameters())
scheduler = self.scheduler_fn(optimiser)
for epoch in range(self.epochs):
# 1. Training
self._epoch_train(epoch, model, optimiser)
# 2. Evaluate performance on val
self._epoch_val(epoch, model)
# 3. Let scheduler update optimiser at end of epoch
scheduler.step()
return model.state_dict()
def _epoch_train(
self, epoch: int, model: DNFBasedClassifier, optimiser: Optimizer
) -> None:
epoch_loss_meter = MetricValueMeter("epoch_loss_meter")
epoch_perf_score_meter = MultiClassAccuracyMeter()
model.train()
for i, data in enumerate(self.train_loader):
optimiser.zero_grad()
x, y = get_dnf_classifier_x_and_y(data, self.use_cuda)
y_hat = model(x)
loss = self._loss_calculation(y_hat, y, model.parameters())
loss.backward()
optimiser.step()
# Update meters
epoch_loss_meter.update(loss.item())
epoch_perf_score_meter.update(y_hat, y)
# Update delta value
new_delta_val = self.delta_decay_scheduler.step(model, epoch)
if new_delta_val == 1.0:
# The first time where new_delta_val becomes 1, the network isn't
# train with delta being 1 for that epoch. So delta_one_counter
# starts with -1, and when new_delta_val is first time being 1,
# the delta_one_counter becomes 0.
self.delta_one_counter += 1
# Log average performance for train
avg_loss = epoch_loss_meter.get_average()
avg_perf = epoch_perf_score_meter.get_average()
log.info(
"[%3d] Train Delta: %.3f avg loss: %.3f avg perf: %.3f"
% (epoch + 1, new_delta_val, avg_loss, avg_perf)
)
# Generate weight histogram
sd = model.state_dict()
conj_w = sd["dnf.conjunctions.weights"].flatten().detach().cpu().numpy()
disj_w = sd["dnf.disjunctions.weights"].flatten().detach().cpu().numpy()
f1 = plt.figure(figsize=(20, 15))
plt.title("Conjunction weight distribution")
arr = plt.hist(conj_w, bins=20)
for i in range(20):
plt.text(arr[1][i], arr[0][i], str(int(arr[0][i])))
f2 = plt.figure(figsize=(20, 15))
plt.title("Disjunction weight distribution")
arr = plt.hist(disj_w, bins=20)
for i in range(20):
plt.text(arr[1][i], arr[0][i], str(int(arr[0][i])))
# WandB logging
wandb.log(
{
"train/epoch": epoch + 1,
"delta": new_delta_val,
"train/loss": avg_loss,
"train/accuracy": avg_perf,
# "conj_w_hist": f1,
# "disj_w_hist": f2,
}
)
plt.close(f1)
plt.close(f2)
def _epoch_val(self, epoch: int, model: DNFBasedClassifier) -> float:
epoch_val_loss_meter = MetricValueMeter("epoch_val_loss_meter")
epoch_val_perf_score_meter = MultiClassAccuracyMeter()
model.eval()
for data in self.val_loader:
with torch.no_grad():
# Get model output and compute loss
x, y = get_dnf_classifier_x_and_y(data, self.use_cuda)
y_hat = model(x)
loss = self._loss_calculation(y_hat, y, model.parameters())
# Update meters
epoch_val_loss_meter.update(loss.item())
epoch_val_perf_score_meter.update(y_hat, y)
avg_loss = epoch_val_loss_meter.get_average()
avg_perf = epoch_val_perf_score_meter.get_average()
log.info(
"[%3d] Val avg loss: %.3f avg perf: %.3f"
% (epoch + 1, avg_loss, avg_perf)
)
wandb.log(
{
"val/epoch": epoch + 1,
"val/loss": avg_loss,
"val/accuracy": avg_perf,
}
)
return avg_perf
def _loss_calculation(
self,
y_hat: Tensor,
y: Tensor,
parameters: Iterable[nn.parameter.Parameter],
) -> Tensor:
if self.loss_func_key == "bce":
y_gt = torch.zeros(y_hat.shape, device=y_hat.device)
y_gt[torch.arange(len(y)), y.long()] = 1
y_hat = (torch.tanh(y_hat) + 1) / 2
else:
y_gt = y
loss = self.criterion(y_hat, y_gt)
if self.delta_one_counter >= 10:
# Extra regularisation when delta has been 1 more than for 10.
# Pushes weights towards 0, -6 or 6.
def modified_l1_regulariser(w: Tensor):
return torch.abs(w * (6 - torch.abs(w))).sum()
def l1_regulariser(w: Tensor):
return torch.abs(w).sum()
weight_regulariser = (
modified_l1_regulariser
if self.reg_fn == "l1_mod"
else l1_regulariser
)
reg = self.reg_lambda * sum(
[weight_regulariser(p.data) for p in parameters]
)
loss += reg
return loss