-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
260 lines (220 loc) · 8.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
from collections import Counter
from enum import Enum
from typing import Dict, List, Optional, Tuple
import torch
from torch import Tensor, nn
from torch.utils.data import DataLoader, WeightedRandomSampler
from torchvision.transforms import transforms
from common import INCEPTION_INPUT_SIZE, CUBDNDataItem
from dataset import CUBDNDataset
from rule_learner import DNFBasedClassifier
################################################################################
# Dataset utils #
################################################################################
FULL_PKL_KEYS = ["full_train_pkl", "full_val_pkl", "full_test_pkl"]
PARTIAL_PKL_KEYS = ["partial_train_pkl", "partial_val_pkl", "partial_test_pkl"]
class DataloaderMode(Enum):
TRAIN = "train"
VAL = "val"
TEST = "test"
def load_partial_cub_data(
is_training: bool,
batch_size: int,
data_path_dict: Dict[str, str],
use_img_tensor: bool = True,
) -> Tuple[DataLoader, DataLoader] | DataLoader:
# Use exisiting pkl files
# data_path_dict should contain specified pkl file path
return _load_cub_data(
is_training=is_training,
batch_size=batch_size,
data_path_list=[data_path_dict[k] for k in PARTIAL_PKL_KEYS],
cub_img_dir=data_path_dict["cub_images_dir"],
use_img_tensor=use_img_tensor,
)
def load_full_cub_data(
is_training: bool,
batch_size: int,
data_path_dict: Dict[str, str],
use_img_tensor: bool = True,
) -> Tuple[DataLoader, DataLoader] | DataLoader:
return _load_cub_data(
is_training=is_training,
batch_size=batch_size,
data_path_list=[data_path_dict[k] for k in FULL_PKL_KEYS],
cub_img_dir=data_path_dict["cub_images_dir"],
use_img_tensor=use_img_tensor,
)
def _load_cub_data(
is_training: bool,
batch_size: int,
data_path_list: List[str],
cub_img_dir: str,
use_img_tensor: bool = True,
) -> Tuple[DataLoader, DataLoader] | DataLoader:
"""Load partial CUB data according to selected classes
Args:
is_training (bool): is training or not.
batch_size (int): batch size.
data_path_list (List[str]): list of pickle pile string, HAS TO BE IN THE
OREDR of train, val and test.
cub_img_dir (str): CUB dataset images directory.
selected_classes (Optional[List[int]], optional): selected classes.
Defaults to None.
use_img_tensor (bool, optional): whether load images as tensor. If not,
dummy image tensor are created instead of loading the image from file.
Defaults to True.
Returns:
Union[Tuple[DataLoader, DataLoader], DataLoader]: target dataloader(s)
"""
def _get_data_from_pkl(data_pkl_path: str) -> List[CUBDNDataItem]:
import pickle
with open(data_pkl_path, "rb") as f:
return pickle.load(f)
if is_training:
train_loader = _get_cub_dataloader(
dataset=_get_data_from_pkl(data_path_list[0]),
dataloader_mode=DataloaderMode.TRAIN,
batch_size=batch_size,
cub_img_dir=cub_img_dir,
use_img_tensor=use_img_tensor,
)
val_loader = _get_cub_dataloader(
dataset=_get_data_from_pkl(data_path_list[1]),
dataloader_mode=DataloaderMode.VAL,
batch_size=batch_size,
cub_img_dir=cub_img_dir,
use_img_tensor=use_img_tensor,
)
return train_loader, val_loader
else:
test_loader = _get_cub_dataloader(
dataset=_get_data_from_pkl(data_path_list[2]),
dataloader_mode=DataloaderMode.TEST,
batch_size=batch_size,
cub_img_dir=cub_img_dir,
use_img_tensor=use_img_tensor,
)
return test_loader
def _get_cub_dataloader(
dataset: List[CUBDNDataItem],
dataloader_mode: DataloaderMode,
batch_size: int,
cub_img_dir: str,
use_img_tensor: bool = True,
) -> DataLoader:
"""
Get data loaders of CUB dataset
"""
if dataloader_mode == DataloaderMode.TEST:
transform = transforms.Compose(
[
transforms.CenterCrop(INCEPTION_INPUT_SIZE),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[2, 2, 2]),
]
)
else:
transform = transforms.Compose(
[
transforms.ColorJitter(
brightness=32 / 255, saturation=(0.5, 1.5) # type: ignore
),
transforms.RandomResizedCrop(INCEPTION_INPUT_SIZE),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[2, 2, 2]),
]
)
cub_dn_dataset = CUBDNDataset(
dataset, cub_img_dir, transform, use_img_tensor
)
num_samples = len(cub_dn_dataset)
# Sampler
if dataloader_mode == DataloaderMode.TRAIN:
get_sample_label = lambda i: cub_dn_dataset.__getitem__(i)["label"]
label_counter = Counter(
[get_sample_label(i) for i in range(num_samples)]
)
sampler = WeightedRandomSampler(
weights=[
1 / label_counter[get_sample_label(i)]
for i in range(num_samples)
],
num_samples=num_samples,
replacement=True,
)
else:
sampler = None
# Othere parameters for dataloader
drop_last = dataloader_mode == DataloaderMode.TRAIN
loader_batch_size = (
num_samples if dataloader_mode == DataloaderMode.VAL else batch_size
)
return DataLoader(
dataset=cub_dn_dataset,
batch_size=loader_batch_size,
drop_last=drop_last,
sampler=sampler,
)
def get_dnf_classifier_x_and_y(
data: dict, use_cuda: bool
) -> Tuple[Tensor, Tensor]:
"""
Get ground truth x and y for DNF Based Classifier
x: attribute label/attribute score
y: class label
"""
x = 2 * data["attr_present_label"] - 1
raw_label = data["label"]
y = raw_label - 1
if use_cuda:
x = x.to("cuda")
y = y.to("cuda")
return x, y
################################################################################
# DNF utils #
################################################################################
class DeltaDelayedExponentialDecayScheduler:
initial_delta: float
delta_decay_delay: int
delta_decay_steps: int
delta_decay_rate: float
def __init__(
self,
initial_delta: float,
delta_decay_delay: int,
delta_decay_steps: int,
delta_decay_rate: float,
):
self.initial_delta = initial_delta
self.delta_decay_delay = delta_decay_delay
self.delta_decay_steps = delta_decay_steps
self.delta_decay_rate = delta_decay_rate
def step(self, model: DNFBasedClassifier, step: int) -> float:
if step < self.delta_decay_delay:
new_delta_val = self.initial_delta
else:
delta_step = step - self.delta_decay_delay
new_delta_val = self.initial_delta * (
self.delta_decay_rate ** (delta_step // self.delta_decay_steps)
)
new_delta_val = 1 if new_delta_val > 1 else new_delta_val
model.set_delta_val(new_delta_val)
return new_delta_val
################################################################################
# Model management #
################################################################################
def load_pretrained_model_state_dict(
model: nn.Module, use_cuda: bool, model_pth: str
):
if use_cuda:
pretrain_dict = torch.load(model_pth)
model.load_state_dict(pretrain_dict)
model.to("cuda")
else:
pretrain_dict = torch.load(model_pth, map_location=torch.device("cpu"))
model.load_state_dict(pretrain_dict)
def freeze_model(model: nn.Module):
for _, param in model.named_parameters():
param.requires_grad = False