forked from robclaassen99/L2D
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_dispatching_rules.py
160 lines (132 loc) · 6.62 KB
/
test_dispatching_rules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from dispatching_rules import *
from uniform_instance_gen import generate_deadlines
from JSSP_Env import SJSSP
import pickle
def test_dd_tightness(data_set, n_j, n_m):
env = SJSSP(n_j=n_j, n_m=n_m)
tardiness_per_c = {}
tightness = 1.0
while tightness <= 2.0:
tightness = round(tightness, 1)
total_num_jobs = 0
total_tardy_jobs = 0
for data in data_set:
# reset JSSP environment
adj, node_fea, candidates, mask = env.reset(data)
# compute job deadlines
job_deadlines = generate_deadlines(times=env.dur, deadline_tightness=tightness)
while True:
action = shortest_processing_time(candidates, mask, env.dur)
adj, fea, reward, done, candidates, mask = env.step(action.item())
if done:
break
job_finish_times = env.temp1[np.arange(env.temp1.shape[0]),
(env.temp1 != 0).cumsum(1).argmax(1)].astype(np.int32)
tardiness = job_deadlines - job_finish_times
total_num_jobs += env.number_of_jobs
total_tardy_jobs += np.sum(tardiness < 0).item()
tardiness_per_c[tightness] = abs(0.5 - total_tardy_jobs / total_num_jobs)
tightness += 0.1
if total_tardy_jobs / total_num_jobs < 0.5:
break
return tardiness_per_c
def generate_deadline_data(data_set, c, n_j, n_m):
env = SJSSP(n_j=n_j, n_m=n_m)
deadline_data_set = []
for data in data_set:
_ = env.reset(data)
job_deadlines = generate_deadlines(times=env.dur, deadline_tightness=c)
deadline_data_set.append(job_deadlines)
return np.array(deadline_data_set)
def baseline_performance(data_set, deadline_data_set, n_j, n_m):
env = SJSSP(n_j=n_j, n_m=n_m)
results_per_env = {}
avg_results = {}
rule_set = ['rand', 'mor', 'mwr', 'lpt', 'spt', 'edd']
# rollout episode using current model
for rule in rule_set:
results_per_env[(rule, 'c_max')] = []
results_per_env[(rule, 't_frac')] = []
results_per_env[(rule, 't_max')] = []
results_per_env[(rule, 't_tot')] = []
for i, data in enumerate(data_set):
# reset JSSP environment
adj, node_fea, candidates, mask = env.reset(data)
rewards = - env.initQuality
while True:
if rule == 'spt':
action = shortest_processing_time(candidates, mask, env.dur)
elif rule == 'lpt':
action = largest_processing_time(candidates, mask, env.dur)
elif rule == 'mwr':
action = most_work_remaining(candidates, mask, env)
elif rule == 'mor':
action = most_operations_remaining(candidates, mask, env)
elif rule == 'rand':
action = random_selection(candidates, mask)
elif rule == 'edd':
action = earliest_due_date(candidates, mask, env, deadline_data_set[i])
adj, fea, reward, done, candidates, mask = env.step(action.item())
rewards += reward
if done:
break
job_finish_times = env.temp1[np.arange(env.temp1.shape[0]),
(env.temp1 != 0).cumsum(1).argmax(1)].astype(np.int32)
tardiness = deadline_data_set[i] - job_finish_times
results_per_env[(rule, 'c_max')].append(abs(rewards - env.posRewards))
results_per_env[(rule, 't_frac')].append(round(np.sum(tardiness < 0).item() / tardiness.shape[0], 2))
results_per_env[(rule, 't_max')].append(round(abs(np.amin(tardiness).item()), 2))
results_per_env[(rule, 't_tot')].append(round(abs(np.sum(tardiness[tardiness < 0]).item()), 2))
avg_results[(rule, 'c_max')] = round(
sum(results_per_env[(rule, 'c_max')]) / len(results_per_env[(rule, 'c_max')]), 2)
avg_results[(rule, 't_frac')] = round(
sum(results_per_env[(rule, 't_frac')]) / len(results_per_env[(rule, 't_frac')]), 2)
avg_results[(rule, 't_max')] = round(
sum(results_per_env[(rule, 't_max')]) / len(results_per_env[(rule, 't_max')]), 2)
avg_results[(rule, 't_tot')] = round(
sum(results_per_env[(rule, 't_tot')]) / len(results_per_env[(rule, 't_tot')]), 2)
return results_per_env, avg_results
if __name__ == '__main__':
n_j = 15
n_m = 15
run_type = 'L2D'
np_seed_val = 200
np_seed_test = 100
compute_results = False
test_set = True
if compute_results:
if test_set:
dataLoaded = np.load(
'./DataGen/Test/generatedTestData_' + str(run_type) + '_' + str(n_j) + '_' + str(
n_m) + '_Seed' + str(np_seed_test) + '.npy')
else:
dataLoaded = np.load(
'./DataGen/generatedData_' + str(run_type) + '_' + str(n_j) + '_' + str(
n_m) + '_Seed' + str(np_seed_val) + '.npy')
test_data = []
for i in range(dataLoaded.shape[0]):
test_data.append((dataLoaded[i][0], dataLoaded[i][1]))
experiment_c = test_dd_tightness(test_data, n_j, n_m)
best_c = min(experiment_c, key=experiment_c.get) # select c with minimum difference to 0.5
deadline_data = generate_deadline_data(test_data, best_c, n_j, n_m)
performance_per_env, avg_performance = baseline_performance(test_data, deadline_data, n_j,
n_m) # [vali_data[0]]
print(avg_performance)
# writing results to picke file, used for dictionary storage
if test_set:
with open('./dispatching_rule_results/test_set_' + str(run_type) + '_' + str(n_j) + '_' + str(n_m) + '_Seed' +
str(np_seed_test) + '.pkl', 'wb') as f:
pickle.dump(performance_per_env, f)
else:
with open('./dispatching_rule_results/' + str(run_type) + '_' + str(n_j) + '_' + str(n_m) + '_Seed' +
str(np_seed_val) + '.pkl', 'wb') as f:
pickle.dump(performance_per_env, f)
else:
if test_set:
with open('./dispatching_rule_results/test_set_' + str(run_type) + '_' + str(n_j) + '_' + str(n_m) + '_Seed' +
str(np_seed_test) + '.pkl', 'rb') as f:
loaded_dict = pickle.load(f)
else:
with open('./dispatching_rule_results/' + str(run_type) + '_' + str(n_j) + '_' + str(n_m) + '_Seed' +
str(np_seed_val) + '.pkl', 'rb') as f:
loaded_dict = pickle.load(f)