-
Notifications
You must be signed in to change notification settings - Fork 97
/
train.py
277 lines (224 loc) · 12.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# -*- coding: utf-8 -*-
import os
import argparse
import random
import numpy as np
from tqdm import tqdm
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.autograd import Variable
from models.classification_heads import ClassificationHead
from models.R2D2_embedding import R2D2Embedding
from models.protonet_embedding import ProtoNetEmbedding
from models.ResNet12_embedding import resnet12
from utils import set_gpu, Timer, count_accuracy, check_dir, log
def one_hot(indices, depth):
"""
Returns a one-hot tensor.
This is a PyTorch equivalent of Tensorflow's tf.one_hot.
Parameters:
indices: a (n_batch, m) Tensor or (m) Tensor.
depth: a scalar. Represents the depth of the one hot dimension.
Returns: a (n_batch, m, depth) Tensor or (m, depth) Tensor.
"""
encoded_indicies = torch.zeros(indices.size() + torch.Size([depth])).cuda()
index = indices.view(indices.size()+torch.Size([1]))
encoded_indicies = encoded_indicies.scatter_(1,index,1)
return encoded_indicies
def get_model(options):
# Choose the embedding network
if options.network == 'ProtoNet':
network = ProtoNetEmbedding().cuda()
elif options.network == 'R2D2':
network = R2D2Embedding().cuda()
elif options.network == 'ResNet':
if options.dataset == 'miniImageNet' or options.dataset == 'tieredImageNet':
network = resnet12(avg_pool=False, drop_rate=0.1, dropblock_size=5).cuda()
network = torch.nn.DataParallel(network, device_ids=[0, 1, 2, 3])
else:
network = resnet12(avg_pool=False, drop_rate=0.1, dropblock_size=2).cuda()
else:
print ("Cannot recognize the network type")
assert(False)
# Choose the classification head
if options.head == 'ProtoNet':
cls_head = ClassificationHead(base_learner='ProtoNet').cuda()
elif options.head == 'Ridge':
cls_head = ClassificationHead(base_learner='Ridge').cuda()
elif options.head == 'R2D2':
cls_head = ClassificationHead(base_learner='R2D2').cuda()
elif options.head == 'SVM':
cls_head = ClassificationHead(base_learner='SVM-CS').cuda()
else:
print ("Cannot recognize the dataset type")
assert(False)
return (network, cls_head)
def get_dataset(options):
# Choose the embedding network
if options.dataset == 'miniImageNet':
from data.mini_imagenet import MiniImageNet, FewShotDataloader
dataset_train = MiniImageNet(phase='train')
dataset_val = MiniImageNet(phase='val')
data_loader = FewShotDataloader
elif options.dataset == 'tieredImageNet':
from data.tiered_imagenet import tieredImageNet, FewShotDataloader
dataset_train = tieredImageNet(phase='train')
dataset_val = tieredImageNet(phase='val')
data_loader = FewShotDataloader
elif options.dataset == 'CIFAR_FS':
from data.CIFAR_FS import CIFAR_FS, FewShotDataloader
dataset_train = CIFAR_FS(phase='train')
dataset_val = CIFAR_FS(phase='val')
data_loader = FewShotDataloader
elif options.dataset == 'FC100':
from data.FC100 import FC100, FewShotDataloader
dataset_train = FC100(phase='train')
dataset_val = FC100(phase='val')
data_loader = FewShotDataloader
else:
print ("Cannot recognize the dataset type")
assert(False)
return (dataset_train, dataset_val, data_loader)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--num-epoch', type=int, default=60,
help='number of training epochs')
parser.add_argument('--save-epoch', type=int, default=10,
help='frequency of model saving')
parser.add_argument('--train-shot', type=int, default=15,
help='number of support examples per training class')
parser.add_argument('--val-shot', type=int, default=5,
help='number of support examples per validation class')
parser.add_argument('--train-query', type=int, default=6,
help='number of query examples per training class')
parser.add_argument('--val-episode', type=int, default=2000,
help='number of episodes per validation')
parser.add_argument('--val-query', type=int, default=15,
help='number of query examples per validation class')
parser.add_argument('--train-way', type=int, default=5,
help='number of classes in one training episode')
parser.add_argument('--test-way', type=int, default=5,
help='number of classes in one test (or validation) episode')
parser.add_argument('--save-path', default='./experiments/exp_1')
parser.add_argument('--gpu', default='0, 1, 2, 3')
parser.add_argument('--network', type=str, default='ProtoNet',
help='choose which embedding network to use. ProtoNet, R2D2, ResNet')
parser.add_argument('--head', type=str, default='ProtoNet',
help='choose which classification head to use. ProtoNet, Ridge, R2D2, SVM')
parser.add_argument('--dataset', type=str, default='miniImageNet',
help='choose which classification head to use. miniImageNet, tieredImageNet, CIFAR_FS, FC100')
parser.add_argument('--episodes-per-batch', type=int, default=8,
help='number of episodes per batch')
parser.add_argument('--eps', type=float, default=0.0,
help='epsilon of label smoothing')
opt = parser.parse_args()
(dataset_train, dataset_val, data_loader) = get_dataset(opt)
# Dataloader of Gidaris & Komodakis (CVPR 2018)
dloader_train = data_loader(
dataset=dataset_train,
nKnovel=opt.train_way,
nKbase=0,
nExemplars=opt.train_shot, # num training examples per novel category
nTestNovel=opt.train_way * opt.train_query, # num test examples for all the novel categories
nTestBase=0, # num test examples for all the base categories
batch_size=opt.episodes_per_batch,
num_workers=4,
epoch_size=opt.episodes_per_batch * 1000, # num of batches per epoch
)
dloader_val = data_loader(
dataset=dataset_val,
nKnovel=opt.test_way,
nKbase=0,
nExemplars=opt.val_shot, # num training examples per novel category
nTestNovel=opt.val_query * opt.test_way, # num test examples for all the novel categories
nTestBase=0, # num test examples for all the base categories
batch_size=1,
num_workers=0,
epoch_size=1 * opt.val_episode, # num of batches per epoch
)
set_gpu(opt.gpu)
check_dir('./experiments/')
check_dir(opt.save_path)
log_file_path = os.path.join(opt.save_path, "train_log.txt")
log(log_file_path, str(vars(opt)))
(embedding_net, cls_head) = get_model(opt)
optimizer = torch.optim.SGD([{'params': embedding_net.parameters()},
{'params': cls_head.parameters()}], lr=0.1, momentum=0.9, \
weight_decay=5e-4, nesterov=True)
lambda_epoch = lambda e: 1.0 if e < 20 else (0.06 if e < 40 else 0.012 if e < 50 else (0.0024))
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_epoch, last_epoch=-1)
max_val_acc = 0.0
timer = Timer()
x_entropy = torch.nn.CrossEntropyLoss()
for epoch in range(1, opt.num_epoch + 1):
# Train on the training split
lr_scheduler.step()
# Fetch the current epoch's learning rate
epoch_learning_rate = 0.1
for param_group in optimizer.param_groups:
epoch_learning_rate = param_group['lr']
log(log_file_path, 'Train Epoch: {}\tLearning Rate: {:.4f}'.format(
epoch, epoch_learning_rate))
_, _ = [x.train() for x in (embedding_net, cls_head)]
train_accuracies = []
train_losses = []
for i, batch in enumerate(tqdm(dloader_train(epoch)), 1):
data_support, labels_support, data_query, labels_query, _, _ = [x.cuda() for x in batch]
train_n_support = opt.train_way * opt.train_shot
train_n_query = opt.train_way * opt.train_query
emb_support = embedding_net(data_support.reshape([-1] + list(data_support.shape[-3:])))
emb_support = emb_support.reshape(opt.episodes_per_batch, train_n_support, -1)
emb_query = embedding_net(data_query.reshape([-1] + list(data_query.shape[-3:])))
emb_query = emb_query.reshape(opt.episodes_per_batch, train_n_query, -1)
logit_query = cls_head(emb_query, emb_support, labels_support, opt.train_way, opt.train_shot)
smoothed_one_hot = one_hot(labels_query.reshape(-1), opt.train_way)
smoothed_one_hot = smoothed_one_hot * (1 - opt.eps) + (1 - smoothed_one_hot) * opt.eps / (opt.train_way - 1)
log_prb = F.log_softmax(logit_query.reshape(-1, opt.train_way), dim=1)
loss = -(smoothed_one_hot * log_prb).sum(dim=1)
loss = loss.mean()
acc = count_accuracy(logit_query.reshape(-1, opt.train_way), labels_query.reshape(-1))
train_accuracies.append(acc.item())
train_losses.append(loss.item())
if (i % 100 == 0):
train_acc_avg = np.mean(np.array(train_accuracies))
log(log_file_path, 'Train Epoch: {}\tBatch: [{}/{}]\tLoss: {:.4f}\tAccuracy: {:.2f} % ({:.2f} %)'.format(
epoch, i, len(dloader_train), loss.item(), train_acc_avg, acc))
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Evaluate on the validation split
_, _ = [x.eval() for x in (embedding_net, cls_head)]
val_accuracies = []
val_losses = []
for i, batch in enumerate(tqdm(dloader_val(epoch)), 1):
data_support, labels_support, data_query, labels_query, _, _ = [x.cuda() for x in batch]
test_n_support = opt.test_way * opt.val_shot
test_n_query = opt.test_way * opt.val_query
emb_support = embedding_net(data_support.reshape([-1] + list(data_support.shape[-3:])))
emb_support = emb_support.reshape(1, test_n_support, -1)
emb_query = embedding_net(data_query.reshape([-1] + list(data_query.shape[-3:])))
emb_query = emb_query.reshape(1, test_n_query, -1)
logit_query = cls_head(emb_query, emb_support, labels_support, opt.test_way, opt.val_shot)
loss = x_entropy(logit_query.reshape(-1, opt.test_way), labels_query.reshape(-1))
acc = count_accuracy(logit_query.reshape(-1, opt.test_way), labels_query.reshape(-1))
val_accuracies.append(acc.item())
val_losses.append(loss.item())
val_acc_avg = np.mean(np.array(val_accuracies))
val_acc_ci95 = 1.96 * np.std(np.array(val_accuracies)) / np.sqrt(opt.val_episode)
val_loss_avg = np.mean(np.array(val_losses))
if val_acc_avg > max_val_acc:
max_val_acc = val_acc_avg
torch.save({'embedding': embedding_net.state_dict(), 'head': cls_head.state_dict()},\
os.path.join(opt.save_path, 'best_model.pth'))
log(log_file_path, 'Validation Epoch: {}\t\t\tLoss: {:.4f}\tAccuracy: {:.2f} ± {:.2f} % (Best)'\
.format(epoch, val_loss_avg, val_acc_avg, val_acc_ci95))
else:
log(log_file_path, 'Validation Epoch: {}\t\t\tLoss: {:.4f}\tAccuracy: {:.2f} ± {:.2f} %'\
.format(epoch, val_loss_avg, val_acc_avg, val_acc_ci95))
torch.save({'embedding': embedding_net.state_dict(), 'head': cls_head.state_dict()}\
, os.path.join(opt.save_path, 'last_epoch.pth'))
if epoch % opt.save_epoch == 0:
torch.save({'embedding': embedding_net.state_dict(), 'head': cls_head.state_dict()}\
, os.path.join(opt.save_path, 'epoch_{}.pth'.format(epoch)))
log(log_file_path, 'Elapsed Time: {}/{}\n'.format(timer.measure(), timer.measure(epoch / float(opt.num_epoch))))