-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_officehome_source.py
252 lines (225 loc) · 9.69 KB
/
train_officehome_source.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
from __future__ import print_function
import argparse
import torch.optim as optim
from utils import *
from taskcv_loader import CVDataLoader
from basenet import *
from torchvision import transforms, datasets
from dataloader import load_data
import torch.nn.functional as F
import os
import time
import numpy as np
import warnings
warnings.filterwarnings('ignore')
# Training settings
parser = argparse.ArgumentParser(description='Visda Classification')
parser.add_argument('--batch_size', type=int, default=128, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=32, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.001, metavar='LR',
help='learning rate (default: 0.0003)')
parser.add_argument('--num_classes', type=int, default=12, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--optimizer', type=str, default='momentum', metavar='OP',
help='the name of optimizer')
parser.add_argument('--seed', type=int, default=3216321, metavar='S',
help='random seed (default: 3216321)')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--num_k', type=int, default=4, metavar='K',
help='how many steps to repeat the generator update')
parser.add_argument('--num-layer', type=int, default=2, metavar='K',
help='how many layers for classifier')
parser.add_argument('--num_gpu', type=int, default=1, metavar='B',
help='board dir')
parser.add_argument('--save', type=str, default='save/mcd', metavar='B',
help='board dir')
parser.add_argument('--train_path', type=str, default='/data1/TL/data//visda2017/clf/train', metavar='B',
help='directory of source datasets')
parser.add_argument('--val_path', type=str, default='/data1/TL/data/visda2017/clf/validation', metavar='B',
help='directory of target datasets')
parser.add_argument('--resnet', type=str, default='50', metavar='B',
help='which resnet 18,50,101,152,200')
parser.add_argument('--load_weight', type=str, default='')
args = parser.parse_args()
torch.manual_seed(1)
torch.cuda.manual_seed_all(2)
# np.random.seed(3)
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = True
args.cuda = True
train_path = args.train_path
val_path = args.val_path
num_k = args.num_k
num_layer = args.num_layer
batch_size = args.batch_size
save_path = args.save + '_' + str(args.num_k)
data_transforms = {
train_path: transforms.Compose([
transforms.Resize((256, 256)),
transforms.RandomHorizontalFlip(),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
val_path: transforms.Compose([
transforms.Resize((256, 256)),
transforms.RandomHorizontalFlip(),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
print(train_path)
dsets = {x: datasets.ImageFolder(os.path.join(x), data_transforms[x]) for x in [train_path, val_path]}
dset_sizes = {x: len(dsets[x]) for x in [train_path, val_path]}
dset_classes = dsets[train_path].classes
dset_classes= [i for i in range(args.num_classes)]
classes_acc = {}
for i in dset_classes:
classes_acc[i] = []
classes_acc[i].append(0)
classes_acc[i].append(0)
print('classes' + str(dset_classes))
print('lr', args.lr)
use_gpu = torch.cuda.is_available()
# train_loader = CVDataLoader()
# train_loader.initialize(dsets[train_path], dsets[val_path], batch_size, shuffle=True, drop_last=True)
# dataset = train_loader.load_data()
# test_loader = CVDataLoader()
# opt = args
# test_loader.initialize(dsets[train_path], dsets[val_path], batch_size, shuffle=True, drop_last=False)
# dataset_test = test_loader.load_data()
train_loader, test_loader, val_loader = load_data(train_path, val_path, batch_size, drop_last=True)
option = 'resnet' + args.resnet
if args.resnet == '101':
G = ResBottle(option)
F1 = ResClassifier(num_classes=args.num_classes,
num_layer=num_layer, num_unit=G.output_num(), middle=1000)
F2 = ResClassifier(num_classes=args.num_classes,
num_layer=num_layer, num_unit=G.output_num(), middle=1000)
else :
G = ResBottle(option)
F1 = ResClassifier_office(num_classes=args.num_classes,
num_layer=num_layer, num_unit=G.output_num(), middle=1000)
F2 = ResClassifier_office(num_classes=args.num_classes,
num_layer=num_layer, num_unit=G.output_num(), middle=1000)
F1.apply(weights_init)
F2.apply(weights_init)
lr = args.lr
if args.load_weight != '':
model = torch.load(args.load_weight)
G.load_state_dict(model['net_G'])
F1.load_state_dict(model['net_F1'])
F2.load_state_dict(model['net_F2'])
if args.optimizer == 'momentum':
optimizer_g = optim.SGD(list(G.parameters()), lr=args.lr, momentum=0.9, weight_decay=0.0005)
optimizer_f = optim.SGD(list(F1.parameters()) + list(F2.parameters()), momentum=0.9, lr=args.lr,
weight_decay=0.0005)
elif args.optimizer == 'adam':
optimizer_g = optim.Adam(G.features.parameters(), lr=args.lr, weight_decay=0.0005)
optimizer_f = optim.Adam(list(F1.parameters()) + list(F2.parameters()), lr=args.lr, weight_decay=0.0005)
if args.cuda:
G = torch.nn.DataParallel(G.cuda())
F1 = torch.nn.DataParallel(F1.cuda())
F2 = torch.nn.DataParallel(F2.cuda())
def train(num_epoch):
criterion = torch.nn.CrossEntropyLoss().cuda()
best_acc=0
for ep in range(num_epoch):
since = time.time()
for batch_idx, (images, label, _) in enumerate(train_loader):
G.train()
F1.train()
F2.train()
if args.cuda:
images, label = images.cuda(), label.cuda()
"""source domain discriminative"""
# Step A train all networks to minimize loss on source
adjust_learning_rate(optimizer_f, ep, batch_idx, 45, 0.01)
optimizer_g.zero_grad()
optimizer_f.zero_grad()
output = G(images)
output1 = F1(output)
output2 = F2(output)
loss1 = criterion(output1, label)
loss2 = criterion(output2, label)
all_loss = loss1 + loss2
all_loss.backward()
optimizer_g.step()
optimizer_f.step()
if batch_idx % args.log_interval == 0:
print(
'Train Ep: {} [{}/{} ({:.6f}%)]\tLoss1: {:.6f}\tLoss2: {:.6f}\t '.format(
ep, batch_idx, 45, 100. * batch_idx / 243,
loss1.item(), loss2.item()))
# test
test(ep)
# best_acc = temp_acc
best_dict = {
'net_G': G.module.state_dict(),
'net_F1': F1.module.state_dict(),
'net_F2': F2.module.state_dict()
}
print('saved!')
torch.save(best_dict, save_path + '.pth')
print('\tbest:', best_acc)
print('time:', time.time() - since)
print('-' * 100)
def test(epoch):
G.eval()
F1.eval()
F2.eval()
test_loss = 0
correct_add = 0
size = 0
start_test = 0
print('-' * 100, '\nTesting')
with torch.no_grad():
for batch_idx, (img, label, _) in enumerate(val_loader):
if args.cuda:
img, label = img.cuda(), label.cuda()
img, label = Variable(img, volatile=True), Variable(label)
output = G(img)
output1 = F1(output)
output2 = F2(output)
test_loss += F.nll_loss(output1, label).item()
output_add = output1 + output2
pred = output_add.data.max(1)[1]
correct_add += pred.eq(label.data).cpu().sum()
size += label.data.size()[0]
for i in range(len(label)):
key_label = dset_classes[label.long()[i].item()]
key_pred = dset_classes[pred.long()[i].item()]
classes_acc[key_label][1] += 1
if key_pred == key_label:
classes_acc[key_pred][0] += 1
# if start_test == 0:
# start_test = 1
# all_fea = output_add.cpu().float()
# all_label = label.cpu().long()
# else:
# all_fea = torch.cat((all_fea, output_add.cpu().float()), 0)
# all_label = torch.cat((all_label, label.cpu().long()), 0)
# draw_data(all_fea, all_label, name='target')
# loss function already averages over batch size
test_loss /= len(test_loader)
print('Epoch: {:d} Test set: Average loss: {:.6f}, Accuracy: {}/{} ({:.6f}%)'.format(
epoch, test_loss, correct_add, size, 100. * float(correct_add) / size))
avg = []
for i in dset_classes:
# print('\t{}: [{}/{}] ({:.6f}%)'.format(i, classes_acc[i][0], classes_acc[i][1],
# 100. * classes_acc[i][0] / classes_acc[i][1]))
if classes_acc[i][1] == 0: continue
avg.append(100. * float(classes_acc[i][0]) / classes_acc[i][1])
temp_acc = np.average(avg)
print('\taverage:', temp_acc)
for i in dset_classes:
classes_acc[i][0] = 0
classes_acc[i][1] = 0
return temp_acc
train(args.epochs + 1)