-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrtree.cxx
389 lines (362 loc) · 9.1 KB
/
rtree.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
//-< RTREE.CXX >-----------------------------------------------------*--------*
// POST++ Version 1.0 (c) 1998 GARRET * ? *
// (Persistent Object Storage) * /\| *
// * / \ *
// Created: 15-Mar-98 K.A. Knizhnik * / [] \ *
// Last update: 15-Mar-98 K.A. Knizhnik * GARRET *
//-------------------------------------------------------------------*--------*
// R-tree class implementation
//-------------------------------------------------------------------*--------*
#define INSIDE_POST
#include "rtree.h"
BEGIN_POST_NAMESPACE
void R_tree::insert(rectangle const& r, object* obj)
{
if (root == NULL) {
root = new_in(*get_storage(), R_page)(r, obj);
height = 1;
} else {
R_page* p = root->insert(r, obj, height);
if (p != NULL) {
// root splitted
root = new_in(*get_storage(), R_page)(root, p);
height += 1;
}
}
n_records += 1;
}
bool R_tree::remove(rectangle const& r, object* obj)
{
if (height != 0) {
R_page::reinsert_list rlist;
if (root->remove(r, obj, height, rlist)) {
R_page* pg = rlist.chain;
int level = rlist.level;
while (pg != NULL) {
for (int i = 0, n = pg->n; i < n; i++) {
R_page* p = root->insert(pg->b[i].rect,
pg->b[i].p, height-level);
if (p != NULL) {
// root splitted
root = new_in(*get_storage(), R_page)(root, p);
height += 1;
}
}
level -= 1;
R_page* next = pg->next_reinsert_page();
delete pg;
pg = next;
}
if (root->n == 1 && height > 1) {
R_page* new_root = root->b[0].p;
delete root;
root = new_root;
height -= 1;
}
n_records -= 1;
return true;
}
}
return false;
}
int R_tree::search(rectangle const& r, callback& cb) const
{
return (n_records != 0) ? root->search(r, cb, height) : 0;
}
int R_tree::search(rectangle const& r, search_buffer& sb) const
{
return (n_records != 0) ? root->search(r, sb, height) : 0;
}
void R_tree::purge(bool delete_leaves)
{
if (root != NULL) {
root->purge(height, delete_leaves);
root = NULL;
n_records = 0;
}
}
REGISTER(R_tree);
//-------------------------------------------------------------------------
// R-tree page methods
//-------------------------------------------------------------------------
//
// Search for objects overlapped with specified rectangle and call
// callback method for all such objects.
//
int R_page::search(rectangle const& r, callback& cb, int level) const
{
assert(level >= 0);
int hit_count = 0;
if (--level != 0) { /* this is an internal node in the tree */
for (int i=0; i < n; i++) {
if ((r & b[i].rect) != 0) {
R_page* child = b[i].p;
hit_count += child->search(r, cb, level);
}
}
} else { /* this is a leaf node */
for (int i=0; i < n; i++) {
if ((r & b[i].rect) != 0) {
cb.apply(b[i].p);
hit_count += 1;
}
}
}
return hit_count;
}
//
// Search for objects overlapped with specified rectangle and place
// all such objects in search buffer.
//
int R_page::search(rectangle const& r, search_buffer& sb, int level) const
{
assert(level >= 0);
int hit_count = 0;
if (--level != 0) { /* this is an internal node in the tree */
for (int i=0; i < n; i++) {
if ((r & b[i].rect) != 0) {
R_page* child = b[i].p;
hit_count += child->search(r, sb, level);
}
}
} else { /* this is a leaf node */
for (int i=0; i < n; i++) {
if ((r & b[i].rect) != 0) {
sb.push(b[i].p);
hit_count += 1;
}
}
}
return hit_count;
}
//
// Create root page
//
R_page::R_page(rectangle const& r, object* obj)
{
n = 1;
b[0].rect = r;
b[0].p = (R_page*)obj;
}
//
// Create new root page (root splitting)
//
R_page::R_page(R_page* old_root, R_page* new_page)
{
n = 2;
b[0].rect = old_root->cover();
b[0].p = old_root;
b[1].rect = new_page->cover();
b[1].p = new_page;
}
//
// Calculate cover of all rectangles at page
//
rectangle R_page::cover() const
{
rectangle r = b[0].rect;
for (int i = 1; i < n; i++) {
r += b[i].rect;
}
return r;
}
R_page* R_page::split_page(branch const& br)
{
int i, j, seed[2];
int rect_area[card+1], waste, worst_waste = INT_MIN;
//
// As the seeds for the two groups, find two rectangles which waste
// the most area if covered by a single rectangle.
//
rect_area[0] = area(br.rect);
for (i = 0; i < card; i++) {
rect_area[i+1] = area(b[i].rect);
}
branch const* bp = &br;
for (i = 0; i < card; i++) {
for (j = i+1; j <= card; j++) {
waste = area(bp->rect + b[j-1].rect) - rect_area[i] - rect_area[j];
if (waste > worst_waste) {
worst_waste = waste;
seed[0] = i;
seed[1] = j;
}
}
bp = &b[i];
}
char taken[card];
rectangle group[2];
int group_area[2];
int group_card[2];
R_page* p;
memset(taken, 0, sizeof taken);
taken[seed[1]-1] = 2;
group[1] = b[seed[1]-1].rect;
if (seed[0] == 0) {
group[0] = br.rect;
p = new_in(*get_storage(), R_page)(br.rect, br.p);
} else {
group[0] = b[seed[0]-1].rect;
p = new_in(*get_storage(), R_page)(group[0], b[seed[0]-1].p);
b[seed[0]-1] = br;
}
group_card[0] = group_card[1] = 1;
group_area[0] = rect_area[seed[0]];
group_area[1] = rect_area[seed[1]];
//
// Split remaining rectangles between two groups.
// The one chosen is the one with the greatest difference in area
// expansion depending on which group - the rect most strongly
// attracted to one group and repelled from the other.
//
while (group_card[0] + group_card[1] < card + 1
&& group_card[0] < card + 1 - min_fill
&& group_card[1] < card + 1 - min_fill)
{
int better_group = -1, chosen = -1, biggest_diff = -1;
for (i = 0; i < card; i++) {
if (!taken[i]) {
int diff = (area(group[0] + b[i].rect) - group_area[0])
- (area(group[1] + b[i].rect) - group_area[1]);
if (diff > biggest_diff || -diff > biggest_diff) {
chosen = i;
if (diff < 0) {
better_group = 0;
biggest_diff = -diff;
} else {
better_group = 1;
biggest_diff = diff;
}
}
}
}
assert(chosen >= 0);
group_card[better_group] += 1;
group[better_group] += b[chosen].rect;
group_area[better_group] = area(group[better_group]);
taken[chosen] = better_group+1;
if (better_group == 0) {
p->b[group_card[0]-1] = b[chosen];
}
}
//
// If one group gets too full, then remaining rectangle are
// split between two groups in such way to balance cards of two groups.
//
if (group_card[0] + group_card[1] < card + 1) {
for (i = 0; i < card; i++) {
if (!taken[i]) {
if (group_card[0] >= group_card[1]) {
taken[i] = 2;
group_card[1] += 1;
} else {
taken[i] = 1;
p->b[group_card[0]++] = b[i];
}
}
}
}
p->n = group_card[0];
n = group_card[1];
for (i = 0, j = 0; i < n; j++) {
if (taken[j] == 2) {
b[i++] = b[j];
}
}
while (i < card) {
b[i++].p = NULL;
}
return p;
}
void R_page::remove_branch(int i)
{
n -= 1;
memcpy(&b[i], &b[i+1], (n-i)*sizeof(branch));
}
R_page* R_page::insert(rectangle const& r, object* obj, int level)
{
branch br;
if (--level != 0) {
// not leaf page
int i, mini = 0;
size_t min_incr = INT_MAX;
size_t best_area = INT_MAX;
for (i = 0; i < n; i++) {
size_t r_area = area(b[i].rect);
size_t incr = area(b[i].rect + r) - r_area;
if (incr < min_incr) {
best_area = r_area;
min_incr = incr;
mini = i;
} else if (incr == min_incr && r_area < best_area) {
best_area = r_area;
mini = i;
}
}
R_page* p = b[mini].p;
R_page* q = p->insert(r, obj, level);
if (q == NULL) {
// child was not split
b[mini].rect += r;
return NULL;
} else {
// child was split
b[mini].rect = p->cover();
br.p = q;
br.rect = q->cover();
return add_branch(br);
}
} else {
br.p = (R_page*)obj;
br.rect = r;
return add_branch(br);
}
}
bool R_page::remove(rectangle const& r, object* obj,
int level, reinsert_list& rlist)
{
if (--level != 0) {
for (int i = 0; i < n; i++) {
if (b[i].rect & r) {
R_page* p = b[i].p;
if (p->remove(r, obj, level, rlist)) {
if (p->n >= min_fill) {
b[i].rect = p->cover();
} else {
// not enough entries in child
p->b[card-1].p = rlist.chain;
rlist.chain = p;
rlist.level = level - 1;
remove_branch(i);
}
return true;
}
}
}
} else {
for (int i = 0; i < n; i++) {
if (b[i].p == obj) {
remove_branch(i);
return true;
}
}
}
return false;
}
void R_page::purge(int level, bool remove_leaves)
{
if (--level != 0) { /* this is an internal node in the tree */
for (int i=0; i < n; i++) {
b[i].p->purge(level, remove_leaves);
}
} else { /* this is a leaf node */
if (remove_leaves) {
for (int i=0; i < n; i++) {
delete b[i].p;
}
}
}
delete this;
}
REGISTER(R_page);
END_POST_NAMESPACE