LDTR aims to detect linear objects in topographic or geological maps.
nvidia-docker pull weiweiduan/ldtr_pytorch:versions
nvidia-docker run -t -i -v {local_dir}:{docker_dir} -p 8888:8888 weiweiduan/ldtr_pytorch:version0 /bin/bash
python generate_noprune_data.py
python train.py --config configs/usgs_railroads.yaml --cuda_visible_device 0
To update the parameters for data, model architecture, and training process, please update './configs/usgs_railroads.yaml'
python test_darpa_map_conflation_shapely.py --cuda_visible_device 0 --config ./configs/usgs_railroads.yaml --checkpoint ./trained_weights/runsrailroads_1965_g256_10/models/checkpoint_epoch=200.pt
Please update './configs/usgs_railroads.yaml' for the path to the testing images
Here is a link to an example training dataset:
- Training Data: Download Here
- Download and unzip the training data
- Update the configuration file (
usgs_railroads.yaml
):- Locate the
DATA_PATH
field. - Set it to the unzipped training data directory.
- Locate the
Here is a link to an example testing dataset:
- Testing Data: Download Here
The zip file contains:
OR_Camas_g256_s100.zip
→ Direct input data for LDTR inference.OR_Camas.tif
→ The original map used for testing.OR_Camas_fault_line.tif
→ Ground truth raster image representing the fault line (linear object).
To test LDTR using this dataset:
- Unzip the testing data
- Update the configuration file (
usgs_railroads.yaml
):- Set
TEST_DATA_PATH
to the unzipped testing data directory. - Set
TEST_MAP_PATH
andTEST_TIF_PATH
to the original map path.
- Set
Note: The image dimension in both training and testing examples is 256*256 pixels