-
Notifications
You must be signed in to change notification settings - Fork 0
/
CMakeLists.txt
129 lines (106 loc) · 7.31 KB
/
CMakeLists.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# Example Audio Plugin CMakeLists.txt
# To get started on a new plugin, copy this entire folder (containing this file and C++ sources) to
# a convenient location, and then start making modifications.
# The first line of any CMake project should be a call to `cmake_minimum_required`, which checks
# that the installed CMake will be able to understand the following CMakeLists, and ensures that
# CMake's behaviour is compatible with the named version. This is a standard CMake command, so more
# information can be found in the CMake docs.
cmake_minimum_required(VERSION 3.15)
set (CMAKE_CXX_STANDARD 20)
# The top-level CMakeLists.txt file for a project must contain a literal, direct call to the
# `project()` command. `project()` sets up some helpful variables that describe source/binary
# directories, and the current project version. This is a standard CMake command.
project(Multigrain VERSION 0.0.1)
# If you've installed JUCE somehow (via a package manager, or directly using the CMake install
# target), you'll need to tell this project that it depends on the installed copy of JUCE. If you've
# included JUCE directly in your source tree (perhaps as a submodule), you'll need to tell CMake to
# include that subdirectory as part of the build.
# find_package(JUCE CONFIG REQUIRED) # If you've installed JUCE to your system
# or
add_subdirectory(JUCE) # If you've put JUCE in a subdirectory called JUCE
# If you are building a VST2 or AAX plugin, CMake needs to be told where to find these SDKs on your
# system. This setup should be done before calling `juce_add_plugin`.
# juce_set_vst2_sdk_path(...)
# juce_set_aax_sdk_path(...)
# `juce_add_plugin` adds a static library target with the name passed as the first argument
# (AudioPluginExample here). This target is a normal CMake target, but has a lot of extra properties set
# up by default. As well as this shared code static library, this function adds targets for each of
# the formats specified by the FORMATS arguments. This function accepts many optional arguments.
# Check the readme at `docs/CMake API.md` in the JUCE repo for the full list.
juce_add_plugin(${PROJECT_NAME}
# VERSION ... # Set this if the plugin version is different to the project version
# ICON_BIG ... # ICON_* arguments specify a path to an image file to use as an icon for the Standalone
# ICON_SMALL ...
# COMPANY_NAME ... # Specify the name of the plugin's author
IS_SYNTH TRUE # Is this a mSynth or an effect?
NEEDS_MIDI_INPUT TRUE # Does the plugin need midi input?
NEEDS_MIDI_OUTPUT FALSE # Does the plugin need midi output?
IS_MIDI_EFFECT FALSE # Is this plugin a MIDI effect?
# EDITOR_WANTS_KEYBOARD_FOCUS TRUE/FALSE # Does the editor need keyboard focus?
# COPY_PLUGIN_AFTER_BUILD TRUE/FALSE # Should the plugin be installed to a default location after building?
PLUGIN_MANUFACTURER_CODE Kurb # A four-character manufacturer id with at least one upper-case character
PLUGIN_CODE Dem0 # A unique four-character plugin id with exactly one upper-case character
# GarageBand 10.3 requires the first letter to be upper-case, and the remaining letters to be lower-case
FORMATS VST3 Standalone # The formats to build. Other valid formats are: AAX Unity VST AU AUv3
PRODUCT_NAME "Multigrain") # The name of the final executable, which can differ from the target name
# `juce_generate_juce_header` will create a JuceHeader.h for a given target, which will be generated
# into your build tree. This should be included with `#include <JuceHeader.h>`. The include path for
# this header will be automatically added to the target. The main function of the JuceHeader is to
# include all your JUCE module headers; if you're happy to include module headers directly, you
# probably don't need to call this.
# juce_generate_juce_header(${PROJECT_NAME})
# `target_sources` adds source files to a target. We pass the target that needs the sources as the
# first argument, then a visibility parameter for the sources which should normally be PRIVATE.
# Finally, we supply a list of source files that will be built into the target. This is a standard
# CMake command.
target_sources(${PROJECT_NAME}
PRIVATE
src/audio_processor/Grain.cpp
src/audio_processor/MultigrainSound.cpp
src/audio_processor/MultigrainVoice.cpp
src/audio_processor/PluginProcessor.cpp
src/audio_processor/SynthAudioSource.cpp
src/ui/AdsrComponent.cpp
src/ui/DebugComponent.cpp
src/ui/FxTabComponent.cpp
src/ui/GrainTabComponent.cpp
src/ui/GrainVisualizer.cpp
src/ui/LookAndFeel.cpp
src/ui/NoteSelector.cpp
src/ui/NoteSlider.cpp
src/ui/PluginEditor.cpp
src/ui/RandomizableSlider.cpp
src/ui/RotarySliderWithLabels.cpp
)
# `target_compile_definitions` adds some preprocessor definitions to our target. In a Projucer
# project, these might be passed in the 'Preprocessor Definitions' field. JUCE modules also make use
# of compile definitions to switch certain features on/off, so if there's a particular feature you
# need that's not on by default, check the module header for the correct flag to set here. These
# definitions will be visible both to your code, and also the JUCE module code, so for new
# definitions, pick unique names that are unlikely to collide! This is a standard CMake command.
target_compile_definitions(${PROJECT_NAME}
PUBLIC
# JUCE_WEB_BROWSER and JUCE_USE_CURL would be on by default, but you might not need them.
JUCE_WEB_BROWSER=0 # If you remove this, add `NEEDS_WEB_BROWSER TRUE` to the `juce_add_plugin` call
JUCE_USE_CURL=0 # If you remove this, add `NEEDS_CURL TRUE` to the `juce_add_plugin` call
JUCE_VST3_CAN_REPLACE_VST2=0)
# If your target needs extra binary assets, you can add them here. The first argument is the name of
# a new static library target that will include all the binary resources. There is an optional
# `NAMESPACE` argument that can specify the namespace of the generated binary data class. Finally,
# the SOURCES argument should be followed by a list of source files that should be built into the
# static library. These source files can be of any kind (wav data, images, fonts, icons etc.).
# Conversion to binary-data will happen when your target is built.
# juce_add_binary_data(AudioPluginData SOURCES ...)
# `target_link_libraries` links libraries and JUCE modules to other libraries or executables. Here,
# we're linking our executable target to the `juce::juce_audio_utils` module. Inter-module
# dependencies are resolved automatically, so `juce_core`, `juce_events` and so on will also be
# linked automatically. If we'd generated a binary data target above, we would need to link to it
# here too. This is a standard CMake command.
target_link_libraries(${PROJECT_NAME}
PRIVATE
# MultigrainFonts # If we'd created a binary data target, we'd link to it here
juce::juce_audio_utils
PUBLIC
juce::juce_recommended_config_flags
juce::juce_recommended_lto_flags
juce::juce_recommended_warning_flags)