This is a Tensorflow implementation of "Squeeze-and-Excitation Networks" aiming to be compatible on the TensorFlow-Slim image classification model library.
SENet proposes an architectural unit called "Squeeze-and-Excitation" (SE) block to improve the representational power of a network by explicitly modelling the interdependencies between the channels of its convolutional features.
- Python 3.x
- TensorFlow 1.x
- TF-slim
You should prepare your own dataset or open dataset (Cifar10, flowers, MNIST, ImageNet). For preparing dataset, you can follow the 'preparing the datasets' part in TF-Slim image models README.
This project is based on TensorFlow-Slim image classification model library.
Every image classification model in TensorFlow-Slim can be run the same.
And, you can run SE-block added models in the below list by adding one argument --attention_module='se_block'
when you train or evaluate a model.
- Inception V4 + SE
- Inception-ResNet-v2 + SE
- ResNet V1 50 + SE
- ResNet V1 101 + SE
- ResNet V1 152 + SE
- ResNet V1 200 + SE
- ResNet V2 50 + SE
- ResNet V2 101 + SE
- ResNet V2 152 + SE
- ResNet V2 200 + SE
To change reduction ratio, you have to manually set the ratio on def se_block(residual, name, ratio=8)
method in SENet-tensorflow-slim/nets/attention_module.py
.
Below script gives you an example of training a model with SE-block.
Don't forget to put an argument --attention_module=se_block
.
DATASET_DIR=/DIRECTORY/TO/DATASET
TRAIN_DIR=/DIRECTORY/TO/TRAIN
CUDA_VISIBLE_DEVICES=0 python train_image_classifier.py \
--train_dir=${TRAIN_DIR} \
--dataset_name=imagenet \
--dataset_split_name=train \
--dataset_dir=${DATASET_DIR} \
--model_name=resnet_v1_50 \
--batch_size=100 \
--attention_module=se_block
Below script gives you an example of training a model without SE-block.
DATASET_DIR=/DIRECTORY/TO/DATASET
TRAIN_DIR=/DIRECTORY/TO/TRAIN
CUDA_VISIBLE_DEVICES=0 python train_image_classifier.py \
--train_dir=${TRAIN_DIR} \
--dataset_name=imagenet \
--dataset_split_name=train \
--dataset_dir=${DATASET_DIR} \
--model_name=resnet_v1_50 \
--batch_size=100
To keep track of validation accuracy while training, you can use eval_image_classifier_loop.py
which evaluate the performance at multiple checkpoints during training.
If you want to just evaluate a model once, you can use eval_image_classifier.py
.
Below script gives you an example of evaluating a model with SE-block during training.
Don't forget to put an argument --attention_module=se_block
.
DATASET_DIR=/DIRECTORY/TO/DATASET
CHECKPOINT_FILE=/DIRECTORY/TO/CHECKPOINT
EVAL_DIR=/DIRECTORY/TO/EVAL
CUDA_VISIBLE_DEVICES=0 python eval_image_classifier_loop.py \
--alsologtostderr \
--checkpoint_path=${CHECKPOINT_FILE} \
--dataset_dir=${DATASET_DIR} \
--eval_dir=${EVAL_DIR} \
--dataset_name=imagenet \
--dataset_split_name=validation \
--model_name=resnet_v1_50 \
--batch_size=100 \
--attention_module=se_block
Below script gives you an example of evaluating a model without SE-block during training.
DATASET_DIR=/DIRECTORY/TO/DATASET
CHECKPOINT_FILE=/DIRECTORY/TO/CHECKPOINT
EVAL_DIR=/DIRECTORY/TO/EVAL
CUDA_VISIBLE_DEVICES=0 python eval_image_classifier_loop.py \
--alsologtostderr \
--checkpoint_path=${CHECKPOINT_FILE} \
--dataset_dir=${DATASET_DIR} \
--eval_dir=${EVAL_DIR} \
--dataset_name=imagenet \
--dataset_split_name=validation \
--model_name=resnet_v1_50 \
--batch_size=100
- Blog: SENet
- Repository: CBAM-TensorFlow-Slim
- Repository: CBAM-TensorFlow
- Repository: CBAM-Keras
- Paper: Squeeze-and-Excitation Networks
- Repository: TensorFlow-Slim image classification model library
Byung Soo Ko / [email protected]