From ed5d1327ec9cc939871a2f7bc10de5725cf36aef Mon Sep 17 00:00:00 2001 From: kociumba <79542688+kociumba@users.noreply.github.com> Date: Tue, 3 Sep 2024 01:23:42 +0200 Subject: [PATCH] update to make github render the notes --- notes.md | 7 +++---- 1 file changed, 3 insertions(+), 4 deletions(-) diff --git a/notes.md b/notes.md index 199cf3f..e9f46f9 100644 --- a/notes.md +++ b/notes.md @@ -26,10 +26,9 @@ $$f(x) = 100 \tanh(kx)$$ $$f(x) = \frac{100x}{\sqrt{1 + kx^2}}$$ **Piecewise Smoothing:** -$$f(x) = \begin{cases} -\frac{x}{(1 + (\frac{x}{100})^n)^{\frac{1}{n}}} & \text{if } x > 0 \ --\frac{-x}{(1 + (\frac{-x}{100})^n)^{\frac{1}{n}}} & \text{if } x \leq 0 -\end{cases}$$ +$$f(x) = \frac{x}{(1 + (\frac{x}{100})^n)^{\frac{1}{n}}} \text{ if } x > 0$$ + +$$f(x) = -\frac{-x}{(1 + (\frac{-x}{100})^n)^{\frac{1}{n}}} \text{ if } x \leq 0$$ Where $k$ and $n$ are adjustable parameters controlling the steepness of the function.