Skip to content

Releases: koenderks/jfa

CRAN-v0.6.0

22 Sep 10:12
Compare
Choose a tag to compare

jfa 0.6.0

New features

  • Added argument alternative with possible options less (default), two.sided, and greater to the evaluation() function that allows control over the type of hypothesis test to perform and the type of confidence / credible interval to calculate.
  • Added predict.jfaPrior() and predict.jfaPosterior() that produce predictions for the data under the prior or posterior distribution.
  • Added method = 'param' to function auditPrior() which takes as input the raw alpha and beta parameters of the prior distribution.
  • Added method = 'strict' to function auditPrior() which constructs an (improper) prior distribution that yields the same results (with respect to sample sizes and upper limits) as classical procedures.
  • Added the modified seed sampling algorithm (method = 'sieve') to selection().
  • Added a new vignette that describes the sampling methodology implemented in jfa.
  • objects from auditPrior(), planning(), and evaluation() now contain information about the posterior predictive distribution when N.units is specified.

Major changes

  • From jfa 0.5.7 to jfa 0.6.0 there has been a major overhaul in the names of function arguments. This is done so that the calls integrate better with general R syntax and the package gets more user-friendly. I apologize for any inconvenience this may cause. The following names have been changed:
    • median -> impartial (in auditPrior())
    • sampleK -> x (in auditPrior())
    • sampleN -> n (in auditPrior())
    • N -> N.units (in auditPrior())
    • maxSize -> max (in planning())
    • increase -> by (in planning())
    • withReplacement-> replace (in selection())
    • ordered -> order (in selection())
    • ascending -> decreasing (in selection())
    • intervalStartingPoint -> start (in selection())
    • algorithm -> method (in selection())
    • expectedErrors -> expected (in auditPrior() and planning())
    • confidence -> conf.level (in auditPrior(), planning(), and evaluation())
    • pHmin -> p.hmin (in auditPrior())
    • minPrecision -> min.precision (in auditPrior(), planning(), and evaluation())
    • population -> data (in selection())
    • kSumstats -> x (in evaluation())
    • nSumstats -> n (in evaluation())
    • sample -> data (in evaluation())
    • bookValues -> values (in selection() and evaluation())
    • auditValues -> values.audit (in evaluation())
    • counts -> times (in evaluation())
    • popBookValues -> N.units (in evaluation())
    • rohrbachDelta -> r.delta (in evaluation())
    • momentPopType -> m.type (in evaluation())
    • csA -> cs.a (in evaluation())
    • csB -> cs.b (in evaluation())
    • csMu -> cs.mu (in evaluation())
    • records -> items (in selection())
    • mus -> values (in selection())
    • hypotheses -> hyp (in auditPrior())
  • poisson is now the default likelihood / method for all functions since it is the most conservative.
  • method = 'interval' is now the default selection method.
  • The default prior distributions used when method = 'default' or prior = TRUE are now set to the gamma(1, 1), beta(1,1), and beta-binomial(1, 1) priors.
  • The times (former counts) argument in evaluation() must now be indicated as a column name in the data instead of a vector.
  • nPrior and kPrior have been removed from the planning() and evaluation() functions. All prior distributions must now be specified using prior = TRUE (noninformative priors) or using a call to auditPrior().
  • Removed the auditBF() function since its value is available through evaluation(materiality = x, prior = auditPrior(method = 'impartial', materiality = x))

Minor changes

  • It is now allowed for x and n to have the same value in evaluation().
  • The parameters for an impartial beta-binomial prior are now calculated more efficiently in the case of zero expected errors.

CRAN-v0.5.7

12 Aug 16:33
Compare
Choose a tag to compare

jfa 0.5.7

Minor changes

  • The logo is now displayed in the ?jfa-package help file.
  • The cheat sheet link has changed in the RADME file.

CRAN-v0.5.6

06 Jul 16:14
Compare
Choose a tag to compare

jfa 0.5.6

Bug fixes

  • Fixed a bug in the print.jfaEvaluation() call if there was no performance materiality specified and prior = TRUE.

CRAN-v0.5.5

01 Jul 12:41
69589e7
Compare
Choose a tag to compare

jfa 0.5.5

New features

  • The print() functions now return a more concise description of the relevant output.
  • Added summary() functions for all returned objects that take over the former (elaborate) output of the print() functions.
  • Implemented a new function auditBF() which computes Bayes factors from summary statistics of an audit sample.

Bug fixes

  • Fixed a bug in evaluation() in which the likelihood stored in the prior was not properly passed to the function.
  • Fixed an error in the calculation of the posterior mode of the beta distribution.

Minor changes

  • Restored the default value (0.95) for the 'confidence' argument in all applicable functions.

CRAN-v0.5.4

03 Jun 07:30
Compare
Choose a tag to compare

jfa 0.5.4

New features

  • Objects with class jfaPosterior as returned by evaluation()$posterior and planning()$expectedPosterior can now be used as input for the prior argument in the planning() and evaluation() functions.

Bug fixes

  • Fixed a bug in method = 'bram' in the auditPrior() function where the prior parameters would go off to infinity when expectedError = 0.

Major changes

  • Now calculates the upper bound for the population errors according to the hypergeometric distribution via an inverted hypothesis test. As a result of this method, the planning() function does not require a value for the materiality anymore when planning with the hypergeometric likelihood.

Minor changes

  • Added a benchmark for the MUS package to the unit tests.
  • Improved plots with better titles and axes labels.

CRAN-v0.5.3

02 May 07:29
Compare
Choose a tag to compare

jfa 0.5.3

New features

  • Made expectedErrors > 0 available for method = 'hypotheses' in the auditPrior().
  • Made method = 'hypotheses' and method = 'median' in the auditPrior() function available for likelihood = 'hypergeometric'.
  • Added bram as a method for the auditPrior() function. method = 'bram' computes a prior distribution with a given mode (expectedError) and upper bound (ub).

Bug fixes

  • Fixed an error in the mode of the gamma posterior distribution from the evaluation() function in which +1 was added to the beta parameter, resulting in slighly lower modes than the correct ones.
  • Made a correction to the calculation of the beta-binomial prior and posterior so that the posterior parameter N has the correct value of N = N - n (current) instead of N - n + k (before).

Major changes

  • Removed the default value confidence = 0.95 in all applicable functions. confidence currently has no default value so that the user is required to give an input.
  • Changed the default likelihood = 'poisson' in the planning() function to likelihood = 'binomial' to be consistent across all functions.
  • Changed the order of most function arguments so that materiality and minPrecision are among the first ones to be shown.

Minor changes

  • Updated the documentation for all functions with more simple examples.

CRAN-v.0.5.2

02 Apr 12:15
Compare
Choose a tag to compare

jfa 0.5.2

New features

  • Update the poisson evaluation calculation so that it allows for fractional errors.

Bug fixes

  • Fixed an error in the hypergeometric upper bound calculation that was accidentally based on the phyper() function instead of the qhyper() function, which resulted in lower bounds than usual.

Minor changes

  • Add statistical tables with output (sample sizes, upper limits, Bayes factors) to the GitHub repository in pdf format.
  • Changed the computation method of the sample sizes for hypergeometric and beta-binomial distributions so that they are faster.

CRAN-v.0.5.1

02 Mar 13:29
Compare
Choose a tag to compare

jfa 0.5.1

Bug fixes

  • Reduced the size of the tarball by adding files to the .Rbuildignore
  • Fixed a bug in selection() where if population is sorted or modified, bv still retained the old ordering and data. The resulting sample was overweighted towards small values and/or still contained negative values (Thanks to @alvanson).

CRAN-v.0.5.0

04 Jan 15:17
Compare
Choose a tag to compare

jfa 0.5.0

New features

  • Add a function report() that automatically generates an audit report.

Major changes

  • Removed the sampling() function, which is now replaced entirely with the selection() function.
  • Changed the output of the evaluation() function when an estimator is used.

CRAN-v.0.4.0

30 Oct 15:46
Compare
Choose a tag to compare

jfa 0.4.0

New features

  • Added digits argument in the internal jfa:::print.jfaPrior(), jfa:::print.jfaPlanning(), jfa:::print.jfaSelection(), and jfa:::print.jfaEvaluation() functions to control rounding in printing.
  • Added description, statistics, specifics and hypotheses to the output of the auditPrior() function.
  • Added class jfaPosterior with print() and plot() methods.
  • Added expectedPosterior of class jfaPosterior to the output of the planning() function, includes description, statistics and hypotheses.
  • Added posterior of class jfaPosterior to the output of the evaluation() function, includes description, statistics and hypotheses.

Bug fixes

  • Implemented improved calculation of prior parameters in the auditPrior() function for method = median when expectedErrors > 0.

Major changes

  • Add a warning message to the sampling() function that it will be deprecated from 0.5.0 onward. You can use selection() instead, since sampling() causes namespace issues with other packages.

Minor changes

  • Changed the class jfaSampling to jfaSelection. This should not have any consequences.