Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

When using masked loss, the console output is confusing as hell. #1773

Open
iqddd opened this issue Nov 9, 2024 · 1 comment
Open

When using masked loss, the console output is confusing as hell. #1773

iqddd opened this issue Nov 9, 2024 · 1 comment
Labels
enhancement New feature or request

Comments

@iqddd
Copy link

iqddd commented Nov 9, 2024

When using masked loss, the console output is confusing as hell.
The simplest dataset config:

[[datasets]]

  [[datasets.subsets]]
  conditioning_data_dir = 'E:\\tmp\\masks'
  image_dir = 'E:\\tmp\\train_dataset\\1_foobar_xl'

All other settings are set in the main .toml file (including enable_bucket = true, etc.) Here
In the console, we see something like this:

                    INFO     63 train images with repeating.                                          train_util.py:2010
                    INFO     0 reg images.                                                            train_util.py:2013
                    WARNING  no regularization images / 正則化画像が見つかりませんでした              train_util.py:2018
                    INFO     [Dataset 0]                                                              config_util.py:567
                               batch_size: 4
                               resolution: (1024, 1024)
                               enable_bucket: False
                               network_multiplier: 1.0


2024-11-09 23:41:01 INFO     [Dataset 0]                                                              config_util.py:573
2024-11-09 23:41:06 INFO     loading image sizes.                                                      train_util.py:923
100%|████████████████████████████████████████████████████████████████████████████████| 63/63 [00:00<00:00, 9636.10it/s]
                    INFO     make buckets                                                              train_util.py:946
                    WARNING  min_bucket_reso and max_bucket_reso are ignored if bucket_no_upscale is   train_util.py:963
                             set, because bucket reso is defined by image size automatically /
                             bucket_no_upscaleが指定された場合は、bucketの解像度は画像サイズから自動計
                             算されるため、min_bucket_resoとmax_bucket_resoは無視されます
                    INFO     number of images (including repeats) /                                    train_util.py:992
                             各bucketの画像枚数(繰り返し回数を含む)
                    INFO     bucket 0: resolution (704, 1344), count: 2                                train_util.py:997
                    INFO     bucket 1: resolution (768, 1280), count: 3                                train_util.py:997
                    INFO     bucket 2: resolution (832, 1216), count: 22                               train_util.py:997
                    INFO     bucket 3: resolution (896, 1152), count: 17                               train_util.py:997
                    INFO     bucket 4: resolution (960, 1088), count: 5                                train_util.py:997
                    INFO     bucket 5: resolution (1024, 1024), count: 9                               train_util.py:997
                    INFO     bucket 6: resolution (1088, 960), count: 2                                train_util.py:997
                    INFO     bucket 7: resolution (1152, 896), count: 2                                train_util.py:997
                    INFO     bucket 8: resolution (1216, 832), count: 1                                train_util.py:997
                    INFO     mean ar error (without repeats): 0.0 

enable_bucket: False? No subsets? And then make buckets?
There is no dataset and no captions information in the metadata of the final file either.

@kohya-ss kohya-ss added the enhancement New feature or request label Nov 10, 2024
@iqddd
Copy link
Author

iqddd commented Nov 12, 2024

The issue lies in the change of the dataset type from DreamboothDataset to ControlNetDataset. The current implementation of the 'masked loss' functionality appears to be a work-around rather than a fully-fledged solution.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
enhancement New feature or request
Projects
None yet
Development

No branches or pull requests

2 participants