chapter_tree/binary_tree_traversal/ #25
Replies: 64 comments 57 replies
-
点进去好像没有看见go的代码显示? 想知道有没有机会贡献go的代码 |
Beta Was this translation helpful? Give feedback.
-
结点总数为 n 的二叉树的高度 Log2(n+1) - 1 |
Beta Was this translation helpful? Give feedback.
-
所谓的前中后序遍历:先遍历父节点为preOrder,第二个遍历父节点为inOrder,最后遍历父节点为postOrder |
Beta Was this translation helpful? Give feedback.
-
遍历方式:
|
Beta Was this translation helpful? Give feedback.
-
用栈实现 dfs |
Beta Was this translation helpful? Give feedback.
-
这里的前中后序,指的是根结点吧 |
Beta Was this translation helpful? Give feedback.
-
问:为什么DFS遍历二叉树有前、中、后三种顺序,分别有什么用呢? |
Beta Was this translation helpful? Give feedback.
-
递归利用栈的数据结构,代码的真少啊 |
Beta Was this translation helpful? Give feedback.
-
为啥没有c的代码,描述数据结构最好的代码就是c啊 |
Beta Was this translation helpful? Give feedback.
-
你这个前、中、后序遍历的图简直太好了,把我至今抽象的理解具现化了 ❤️ |
Beta Was this translation helpful? Give feedback.
-
binary_tree_bfs.c
|
Beta Was this translation helpful? Give feedback.
-
空间复杂度:在最差情况下,即满二叉树时,遍历到最底层之前,队列中最多同时存在 (N+1)/2个节点——满二叉树,bfs遍历到最底层之前,队列中的节点就是叶节点2的h次方吧? |
Beta Was this translation helpful? Give feedback.
-
太牛啦,每次面试都需要复习一遍,这次永远不会忘记了 |
Beta Was this translation helpful? Give feedback.
-
前序遍历结合栈使用迭代
|
Beta Was this translation helpful? Give feedback.
-
太棒了,对递归了解更多了一点,其他的广度优先和深度优先遍历是不是也用递归 |
Beta Was this translation helpful? Give feedback.
-
深度优先算法提供的示例是不是都有问题,好像没有声明list,不该在参数中声明一下吗? |
Beta Was this translation helpful? Give feedback.
-
NOTE:在python里面,判断deque非空用 |
Beta Was this translation helpful? Give feedback.
-
def level_order(root: TreeNode | None) -> list[int]: |
Beta Was this translation helpful? Give feedback.
-
|
Beta Was this translation helpful? Give feedback.
-
二叉树的前中后序遍历的递归和非递归C语言版本代码 // 前序遍历, idx用于递归时确定下一个结果存放在结果数组什么位置
void pre_traversal_rec(TreeNode *root, float* arr, int* idx){ if (!root) return ; arr[(*idx)++] = root->val; pre_traversal_rec(root->left, arr, idx); pre_traversal_rec(root->right, arr, idx); }
void pre_traversal_nrec(TreeNode *root, float* arr, int size){
if (!root) return ; int top = -1, idx = 0; TreeNode **stack = (TreeNode **)malloc(sizeof(TreeNode*) * size); stack[++top] = root;
// 出栈,获取节点值,入栈右左子节点,直到栈为空
while (top >= 0){ TreeNode *node = stack[top--]; arr[idx++] = node->val; if (node->right) stack[++top] = node->right; if (node->left) stack[++top] = node->left; }
}
// 中序遍历
void in_traversal_rec(TreeNode *root, float *arr, int *idx){ if (!root) return ; in_traversal_rec(root->left, arr, idx); arr[(*idx)++] = root->val; in_traversal_rec(root->right, arr, idx); }
void in_traversal_nrec(TreeNode *root, float *arr, int size){
if (!root) return; int top = -1, idx = 0; TreeNode **stack = (TreeNode **)malloc(sizeof(TreeNode*) * size); TreeNode *cur = root;
// 1. 压栈的同时,将当前指针移动到最左边的节点。2. 出栈,获取节点值。 3. 将指针移动到右子节点。循环1-3直到栈为空。
while (top >=0 || cur){
while (cur) { stack[++top] = cur; cur = cur->left; }
cur = stack[top--]; arr[idx++] = cur->val; cur = cur->right;
}
}
// 后序遍历
void post_traversal_rec(TreeNode *root, float *arr, int *idx){ if (!root) return; post_traversal_rec(root->left, arr, idx); post_traversal_rec(root->right, arr, idx); arr[(*idx)++] = root->val; }
// 非递归方法1:使用栈+上次访问标记
void post_traversal_nrec(TreeNode *root, float *arr, int size) {
if (!root) return; int top = -1, idx = 0;
TreeNode **stack = (TreeNode **)malloc(sizeof(TreeNode*) * size), *cur = root, *lastVisited = NULL; // lastVisited 用于记录上一个访问的节点
// 1. 压栈的同时,将当前指针移动到最左边的节点。2. 如果右子节点存在且未被访问过,则将指针移动到右子节点。3. 否则,出栈,获取节点值。4. 记录上一个访问的节点。循环1-4直到栈为空。
while (top >=0 || cur){
while(cur) {stack[++top] = cur; cur = cur->left; } cur = stack[top];
if (cur->right && cur->right != lastVisited) { cur = cur->right; }
else { arr[idx++] = cur->val; lastVisited = cur; top--; cur = NULL; }
}
}
// 非递归方法2:使用双栈
void post_traversal_nrec2(TreeNode *root, float *arr, int size){
if (!root) return; int top1 = -1, top2 = -1, idx = 0;
// 栈1用于存储节点,栈2用于存储栈1出栈的节点。栈1出栈的顺序是根右左,栈2出栈的顺序是左右根。
TreeNode **stack1 = (TreeNode **)malloc(sizeof(TreeNode*) * size), **stack2 = (TreeNode **)malloc(sizeof(TreeNode*) * size); stack1[++top1] = root;
// 遍历栈1,将节点出栈,存入栈2, 入栈左右子节点。
while (top1 >= 0){ TreeNode *node = stack1[top1--]; stack2[++top2] = node; if (node->left) stack1[++top1] = node->left; if (node->right) stack1[++top1] = node->right; }
// 遍历栈2,将节点出栈,存入结果数组。
while (top2 >= 0) arr[idx++] = stack2[top2--]->val;
} |
Beta Was this translation helpful? Give feedback.
-
想问一下大佬,前中后序遍历是约定俗称的遍历方式嘛?我们在学习的时候,就是只需要记住遍历的顺序和实现方法就好了吗? |
Beta Was this translation helpful? Give feedback.
-
空间复杂度:在最坏情况下(树完全倾斜到一边),空间复杂度为 O(n),因为递归调用栈的深度可能达到 n。在平衡树的情况下,空间复杂度为 O(log n)。 |
Beta Was this translation helpful? Give feedback.
-
如果广度优先遍历的函数只返回一个列表,而不是访问节点值并打印的话,可以考虑原地的算法不用辅助队列。只用双指针也可以,快指针用来向数组尾部添加左右子树,慢指针指向当前访问的节点,当快慢指针重合时停止,返回列表 |
Beta Was this translation helpful? Give feedback.
-
是的,按照根的访问顺序来分,只有这三种,要么根先,要么根中,要么根后,但是对于这三种遍历中的任意一种,你也可以从右子树遍历,这样你的前序遍历顺序就是:根右左。
我觉得作者画的区分前中后三种遍历的那个图不错,看一眼就忘不了
Yojay97 ***@***.***> 于2024年10月3日周四 11:49写道:
… 想问一下大佬,前中后序遍历是约定俗称的遍历方式嘛?我们在学习的时候,就是只需要记住遍历的顺序和实现方法就好了吗?
—
Reply to this email directly, view it on GitHub
<#25 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ANN3UQD23D4I77FTGH673QTZZS5FRAVCNFSM6AAAAAASLXLDJWVHI2DSMVQWIX3LMV43URDJONRXK43TNFXW4Q3PNVWWK3TUHMYTAOBSG4ZDMNY>
.
You are receiving this because you commented.Message ID:
***@***.***>
|
Beta Was this translation helpful? Give feedback.
-
Python 迭代法 def preorderTraversal(root: TreeNode) -> list[int]:
ret, s = [], []
while s or root:
if root:
ret.append(root.val)
s.append(root)
root = root.left
else:
root = s.pop().right
return ret
def preorderTraversal(root: TreeNode) -> list[int]:
ret, s = [], []
while s or root:
if root:
s.append(root)
root = root.left
else:
root = s.pop()
ret.append(root.val)
root = root.right
return ret
def postorderTraversal(root: TreeNode) -> list[int]:
ret, s = [], []
while s or root:
while root:
ret.insert(0, root.val)
s.append(root)
root = root.right
root = s.pop().left
return ret |
Beta Was this translation helpful? Give feedback.
-
以下是C++的迭代遍历树的代码(如果有问题,或者有可以优化的地方敬请指正)该代码是我基于学校数据结构和算法基础课程的C语言代码修改的,后序遍历的迭代算法有两种实现: struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int val, TreeNode *left, TreeNode *right) {
this->val = val;
this->left = left;
this->right = right;
}
TreeNode(int val):left(nullptr), right(nullptr){this->val = val;}
};
vector<int> preOeder(TreeNode *root){
vector<int> vec;
stack<TreeNode *> s; // 深度优先遍历到底层后需要回溯,回溯时由底层向上层,先进后出,故采用栈存储
if(!root) return vec;
s.push(root);
while(!s.empty()){
TreeNode *curr = s.top();
vec.push_back(curr->val); // 这里表示先访问了根节点
s.pop();
// 这里压栈的顺序要注意,栈是先进后出的,因此应该先压右子树
if(curr->right){
s.push(curr->right);
}
if(curr->left){
s.push(curr->left);
}
}
return vec;
}
vector<int> inOrder(TreeNode *root){
vector<int> vec;
stack<TreeNode *> s;
if(!root) return vec;
TreeNode *curr = root;
while(!s.empty() || curr){ // 增加curr判断条件,因为遍历了根节点后栈为空,但此时右子树尚未遍历,此时curr为右子树的根节点
// 先把当前根节点的左子树遍历了
while(curr){
s.push(curr);
curr = curr->left;
}
curr = s.top(); // 左子树遍历完毕,这里可以访问根节点
vec.push_back(curr->val);
s.pop();
// 转向处理右子树
curr = curr->right;
}
return vec;
}
// 双栈法
vector<int> postOrder1(TreeNode *root){
vector<int> vec;
stack<TreeNode *> s1; // 用于存储待处理根节点的左右节点
stack<TreeNode *> s2; // 用于存储根节点,用于反转输出顺序
if(!root) return vec;
s1.push(root);
while(!s1.empty()){
TreeNode *curr = s1.top();
s1.pop();
s2.push(curr); // 此时curr就是一个根节点,直接入栈s2
// 先入s2表示后输出,因此s1先入左子树节点,再入右子树节点,保证取出curr时是右子树节点先入s2
if(curr->left){
s1.push(curr->left);
}
if(curr->right){
s1.push(curr->right);
}
}
// 取出s2的元素赋值给vec
while(!s2.empty()){
TreeNode *node = s2.top();
s2.pop();
vec.push_back(node->val);
}
return vec;
}
// 一个栈+状态
vector<int> postOrder2(TreeNode *root){
vector<int> vec;
stack<TreeNode *> s;
if(!root) return vec;
TreeNode *curr = root;
TreeNode *lastVisited = nullptr; // 记录最近访问过的节点
while (!s.empty() || curr)
{
// 先将根节点及其左子树压入栈
while(curr){
s.push(curr);
curr = curr->left;
}
curr = s.top();
// 如果当前节点的右子树为空或者已经被访问,则访问该节点
if(!curr->right || curr->right == lastVisited){
s.pop();
vec.push_back(curr->val);
lastVisited = curr; // 更新被访问的节点
curr = nullptr; // 准备弹出下一个节点
} else{
// 转向处理右子树
curr = curr->right;
}
}
return vec;
} |
Beta Was this translation helpful? Give feedback.
-
如果有人写Rust时碰到提示说无法推导出类型需要类型标注,看下你是不是自动导入了 |
Beta Was this translation helpful? Give feedback.
-
这是来自QQ邮箱的假期自动回复邮件。
您好,我最近正在休假中,无法亲自回复您的邮件。我将在假期结束后,尽快给您回复。
|
Beta Was this translation helpful? Give feedback.
-
//翻转二叉树
|
Beta Was this translation helpful? Give feedback.
-
// 二叉树的最大深度 |
Beta Was this translation helpful? Give feedback.
-
chapter_tree/binary_tree_traversal/
一本动画图解、能运行、可提问的数据结构与算法入门书
https://www.hello-algo.com/chapter_tree/binary_tree_traversal/
Beta Was this translation helpful? Give feedback.
All reactions