-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUntitled-3.py
161 lines (140 loc) · 5.52 KB
/
Untitled-3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#!/usr/bin/python
import os
import requests
import uuid
import random
import time
import sys
import csv
import json
#INFLUX_TOKEN='qCAYOyvOErIP_KaJssk_neFar-o7PdvHL64eWYCD_ofywR_J3iubktdB58A3TE-6sM7C61Gt8qOUPvc4t0WVBg=='
INFLUX_TOKEN='Gg6a5FSBu3pUquU-lreVvIkLGlCAI3xGeeMLNAqI72ogt0ABSZdub2Mk5U02q2FuOZrh5pyrMVbki6d1ciTszQ=='
ORG="asz"
#INFLUX_CLOUD_URL='localhost'
INFLUX_CLOUD_URL='192.168.0.106'
BUCKET_NAME='b'
# Be sure to set precision to ms, not s
QUERY_URI='http://{}:8086/api/v2/write?org={}&bucket={}&precision=ms'.format(INFLUX_CLOUD_URL,ORG,BUCKET_NAME)
headers = {}
headers['Authorization'] = 'Token {}'.format(INFLUX_TOKEN)
measurement_name = 'sample2'
# Increase the points, 2, 10 etc.
number_of_points = 1000
batch_size = 1000
data_end_time = int(time.time() * 1) #milliseconds
id_tags = []
for i in range(100):
id_tags.append(str(uuid.uuid4()))
data = []
current_point_time = data_end_time
directory = "/home/k/Downloads/a"
os.getcwd()
print(os.getcwd())
os.chdir('/home/k/Downloads/a')
print(os.getcwd())
#os.chdir(r'/home/k/Downloads/_d')
data = []
for root,dirs,files in os.walk(directory):
for file in files:
#print(file)
'''
f = open('/home/rv/ncbi-blast-2.2.23+/db/output.blast')
z = csv.reader(f, delimiter='\t')
...
f.close()
'''
print(files)
if file.endswith(".csv"):
f=open(file, 'r')
csv_reader = csv.reader(f, delimiter=',')
#with open(file) as csv_file:
#csv_reader = csv.reader(csv_file, delimiter=',')
print('Processed')
for row in csv_reader:
_row = 0
#current_point_time = current_point_time - 1000
#_data_end_time = _data_end_time + (1 * 1000)
if row[0] == "TIMESTAMP":
pass
else:
#_add = int(time.time()) - int(row[0])
_row = int((int(row[0])) * 1000 * 1000 * 1000)
#_row = int((int(row[0])) * 1000)
#print(_add)
#print(#_data_end_time,
# row[0],_row, row[1], row[2], row[3], row[4],'\n')
data.append("{measurement},DS_ID={location} POWER_A={POWER_A},POWER_B={POWER_B},POWER_C={POWER_C},PF_A={PF_A},PF_B={PF_B},PF_C={PF_C},PUMP_A={PUMP_A},PUMP_B={PUMP_B},PUMP_C={PUMP_C},LIGHT_A={LIGHT_A},LIGHT_B={LIGHT_B},LIGHT_C={LIGHT_C},LIFT_A={LIFT_A},LIFT_B={LIFT_B},LIFT_C={LIFT_C},LIFT_TOTAL={LIFT_TOTAL},LIGHT_TOTAL={LIGHT_TOTAL},PUMP_TOTAL={PUMP_TOTAL} {timestamp}"
.format(measurement="hdb2", location=row[1], POWER_A=row[2], POWER_B=row[3], POWER_C=row[4], PF_A=row[5], PF_B=row[6], PF_C=row[7], PUMP_A=row[8], PUMP_B=row[9], PUMP_C=row[10], LIGHT_A= row[11], LIGHT_B=row[12], LIGHT_C=row[13], LIFT_A=row[14], LIFT_B=row[15], LIFT_C=row[16], LIFT_TOTAL=row[17], LIGHT_TOTAL=row[18], PUMP_TOTAL=row[19], timestamp=_row))
print(data)
print(file)
#print(f)
# perform calculation
f.close()
'''
'''
time.sleep(2)
print(files)
'''
with open('/home/k/Downloads/influxData/data_0_20200901.csv') as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
print('Processed')
_data_end_time = int(time.time() * 1000) - (100 * 1 * 1000)
for row in csv_reader:
_row = 0
current_point_time = current_point_time - 1000
_data_end_time = _data_end_time + (1 * 1000)
if row[0] == "TIMESTAMP":
pass
else:
_add = int(time.time()) - int(row[0])
#_row = int((int(row[0]) + 5847435 + 952068) * 1000)
_row = int((int(row[0])) * 1000)
print(_add)
print(_data_end_time, row[0],_row, '\n')
data.append("{measurement},location={location} POWER_A={POWER_A},POWER_B={POWER_B},POWER_C={POWER_C} {timestamp}"
.format(measurement=measurement_name, location="reservoir", POWER_A=row[2], POWER_B=row[3], POWER_C=row[4], timestamp=_row))#timestamp=row[0]))......(data_end_time + 1000)
'''
'''
import requests
#import urllib3
#urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
#export PYTHONWARNINGS="ignore:Unverified HTTPS request"
WRITE_URI='https://ts-gssssssssssssssss.influxdata.rds.aliyuncs.com:3242/write'
params = (
('db', 'tt'),
('u', 'evvo'),
('p', 'p@ssword123'),
)
data = 'hdb,block_id=0 p1=0.64,p2=0.34 1434055562000000000'
response = requests.post(WRITE_URI, verify=False, params=params, data=data)
print(response.status_code)
'''
count = 0
WRITE_URI='https://ts-gssssssssssssssss.influxdata.rds.aliyuncs.com:3242/write'
params = (
('db', 'tt'),
('u', 'evvo'),
('p', 'p@ssword123'),
)
'''
WRITE_URI='http://localhost:8086/write'
params = (
('db', 'devconnected-three'),
('u', 'username'),
('p', 'strongpassword'),
)
'''
if __name__ == '__main__':
# Check to see if number of points factors into batch size
count = 0
if ( number_of_points % batch_size != 0 ):
raise SystemExit( 'Number of points must be divisible by batch size' )
# Newline delimit the data
for batch in range(0, len(data), batch_size):
time.sleep(10)
current_batch = '\n'.join( data[batch:batch + batch_size] )
print(current_batch)
#r = requests.post(QUERY_URI, data=current_batch, headers=headers)
r = requests.post(WRITE_URI, verify=False, params=params, data=current_batch)
count = count + 1
print(r.status_code, count, data[count])