Skip to content

Latest commit

 

History

History
54 lines (41 loc) · 9.44 KB

README.md

File metadata and controls

54 lines (41 loc) · 9.44 KB

DOI Python 3.7 License

On the impact of Himalaya-induced gravity waves on the polar vortex, Rossby wave activity and ozone

A. Kuchar, P. Sacha, R. Eichinger, Ch. Jacobi, P. Pisoft, and H. Rieder

Submitted to Atmospheric Chemistry and Physics.

Code used to process and visualise the model and other data outputs in order to reproduce figures in the manuscript. Model data are available here. All datasets already preprocessed can be found here.

Notebooks for each individual figure as well as for two data tables are in the code/ directory, while the figures themselves are in the plots/ directory.

Figures

# Figure Notebook Dependencies
1 Composites documenting vortex morphology moment_calculation_distribution_in_CMAM30-sd_composites.ipynb uref_calculation_CMAM.ipynb, uref_ration_validation.ipynb, moments_fast_example.py, vor_fast_setup.py, vor_fast.py
2 Composite anomalies of NAM NAM_lagA.ipynb
3 Conditional probabilities that NAM is less or equal -1 NAM_lagA.ipynb
4 Composite anomalies of Eliassen-Palm flux GRL_reproduce_Fig1_Himalayas_lagA.ipynb
5 LWA composite at 18 km LWA_anomalies_CMAM.ipynb
6 Composites of anomalies documenting evolution total column ozone for CMAM toz_anomalies_CMAM.ipynb composite_example_ERA5.py
7 Effective_diffusivity composite at 450 K effective_diffusivity_HI_composite-pv-xcontour.ipynb xcontour_isoentropic_CMAM-script.py
8 Composite anomalies of refractive index and zonally averaged OGWD OGWD+refr_index_himalayas_composite_lagA.ipynb refraction_index_calc.py

Supplementary figures

# Figure Notebook Dependencies
S1 Explained variance of NAM time series. NAM_CMAM_variance.ipynb
S2 Residual circulation and ozone anomalies composite chap3_vykreslovani_dizertace_new-DJFonly-tropo-strato-meso.ipynb
S3 Composites in absolute values documenting total column ozone in CMAM, MERRA2, and ERA5 total_ozone_MERRA2_opendap_vs_CMAM30SD.ipynb composite_example_ERA5.py
S4 Age of air anomalies bootstrap_statistical_significance@height-visualization-contourswithclimatology.ipynb
Html interactive file showing Empirical distribution function of interpeak timescales interpeak_times_analysis.ipynb

Auxiliar notebooks: