forked from epfl-lasa/icra-lfd-tutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexercise_3.m
181 lines (157 loc) · 6.23 KB
/
exercise_3.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
function exercise_3()
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%% open parameters %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% hyper-parameters for gaussian process
% these can be learned from data but we will use predetermined values here
ell = 0.1; % lengthscale. bigger lengthscale => smoother, less precise ds
sf = 1; % signal variance
sn = 0.4; % measurement noise
options.objective = 'likelihood'; % 'likelihood'
nb_gaussians = 1;
nb_demo = 1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
close all
% set up a simple robot and a figure that plots it
robot = create_simple_robot();
fig = initialize_robot_figure(robot);
%fig = figure(1);clf;
%robot.plot([0,1])
disp('In this exercise you will peroform very simple record and replay of a demonstrated trajectory.')
disp('You can see the robot in the figure. Give a demonstration of a trajectory in its workspace')
% get a demonstration
% select the number of knots for the spline representation
nb_knots = 10;
% select how many points we should use to represent each demonstration
nb_clean_data_per_demo = 50;
Data = [];
target = zeros(2,1);
hpp = [];
for i=1:nb_demo
[data,hp] = get_demonstration(fig,0);
nb_data = size(data,2);
skip = floor(nb_data/nb_knots);
knots = data(:,1:skip:end);
ppx = spline(knots(3,:),knots(1:2,:));
% % and get first derivative
ppxd = differentiate_spline(ppx);
tt = linspace(knots(3,1), 0.9*knots(3,end), nb_clean_data_per_demo);
pos = ppval(ppx,tt);
target = target+pos(:,end);
pos = pos - repmat(pos(:,end), 1, nb_clean_data_per_demo);
%pos(:,end)
vel = ppval(ppxd,tt);
%vel(:,end) = zeros(2,1);
Data = [Data, [pos;vel]];
hpp = [hpp, hp]
end
delete(hpp);
target = target/nb_demo;
plot(Data(1,:)+target(1), Data(2,:)+target(2), 'r.','markersize',20);
plot(target(1), target(2),'k.','markersize',50);
% learn SEDS model
options.tol_mat_bias = 10^-6; % A very small positive scalar to avoid
% instabilities in Gaussian kernel [default: 10^-1
options.display = 1; % An option to control whether the algorithm
% displays the output of each iterations [default: true]
options.tol_stopping=10^-6; % A small positive scalar defining the stoppping
% tolerance for the optimization solver [default: 10^-10]
options.max_iter = 1000; % Maximum number of iteration for the solver [default: i_max=1000]
[Priors_0, Mu_0, Sigma_0] = initialize_SEDS(Data,nb_gaussians); %finding an initial guess for GMM's parameter
[Priors Mu Sigma]=SEDS_Solver(Priors_0,Mu_0,Sigma_0,Data,options); %running SEDS optimization solver
ds = @(x) GMR(Priors,Mu,Sigma,x,1:2,3:4);
hs = plot_ds_model(fig, ds, target);
qi = simple_robot_ikin(robot,data(1:2,1));
robot.animate(qi);
disp('To improve the accuracy, we can use GP-MDS to locally reshape the DS around the demonstrations')
disp('press enter to continure..')
pause
% get data for learning the reshaping function
% each demonstration will be converted
% from series of pos, vel to series of pos, angle, speed_factor
lmds_data = [];
for i =1:nb_demo
dsi = 1+(i-1)*nb_clean_data_per_demo; % demonstration start index
dei = i*nb_clean_data_per_demo; % demonstration end index
lmds_data = [lmds_data, generate_lmds_data_2d(Data(1:2,dsi:dei),Data(3:4,dsi:dei),ds(Data(1:2,dsi:dei)),0.05)];
end
% we pack the hyper paramters in logarithmic form in a structure
hyp.cov = log([ell; sf]);
hyp.lik = log(sn);
% for convenience we create a function handle to gpr with these hyper
% parameters and with our choice of mean, covaraince and likelihood
% functions. Refer to gpml documentation for details about this.
gp_handle = @(train_in, train_out, query_in) gp(hyp, ...
@infExact, {@meanZero},{@covSEiso}, @likGauss, ...
train_in, train_out, query_in);
% we now define our reshaped dynamics
% go and have a look at gp_mds_2d to see what it does
reshaped_ds = @(x) gp_mds_2d(ds, gp_handle, lmds_data, x);
delete(hs); % delete the seds streamlines
hs = plot_ds_model(fig, reshaped_ds, target); % and replace them with the reshaped ones
% to understand where the gp has infuence, it is useful to plot its
% variance
hv = plot_gp_variance_2d(fig, gp_handle, lmds_data(1:2,:)+repmat(target, 1,size(lmds_data,2)));
% simulate tracking of the trajectory in the absence of perturbations
% start simulation
dt = 0.005;
while 1
disp('Select a starting point for the simulation...')
try
xs = get_point(fig);
qs = simple_robot_ikin(robot, xs);
robot.animate(qs)
simulation(qs);
catch
disp('could not find joint space configuration. Please choose another point in the workspace.')
end
end
%simulation(qi,1);
function simulation(q)
t = 0;
qd = [0,0];
ht = [];
while(1)
% compute state of end-effector
x = robot.fkine(q);
x = x(1:2,4);
xd = robot.jacob0(q)*qd';
xd = xd(1:2);
xd_ref = reshaped_ds(x-target);%reference_vel(t);
% put lower bound on speed, just to speed up simulation
th = 5.0;
if(norm(xd_ref)<th)
xd_ref = xd_ref/norm(xd_ref)*th;
end
xdd_ref = -(xd - xd_ref)/dt*0.5;
% compute cartesian control
B = findDampingBasis(xd_ref);
D = B*[4 0;0 8]*B';
u_cart = - D*(xd-xd_ref);
% feedforward term
u_cart = u_cart + simple_robot_cart_inertia(robot,q)*xdd_ref;
% compute joint space control
u_joint = robot.jacob0(q)'*[u_cart;zeros(4,1)];
% apply control to the robot
qdd = robot.accel(q,qd,u_joint')';
% integrate one time step
qd = qd+dt*qdd;
q = q+qd*dt+qdd/2*dt^2;
t = t+dt;
if (norm(x - target)<0.1)
break
end
robot.delay = dt;
robot.animate(q);
ht = [ht, plot(x(1), x(2), 'm.', 'markersize',20)];
end
delete(ht);
end
end
function B = findDampingBasis(xd)
y1 = 1;
y2 = -xd(1)/xd(2);
y = [y1;y2];
B = [xd./norm(xd), y./norm(y)];
end