-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecryptM_Plotting.R
442 lines (349 loc) · 22.2 KB
/
decryptM_Plotting.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
# To run this code, please download the files "06_curves_forplotting.txt" from Zenodo (see README).
# This file should be imported as a dataframe called "curves".
############################################################
# Supplementary Fig. 3b + Supplementary Fig. 4a (barplots)
############################################################
# Prepare the data: summarise counts for ATRi
curves$reg_exp <- paste0(curves$Experiment,"_", curves$`Curve Regulation`)
barplot_df <- curves %>% group_by(Experiment, `Curve Regulation`, reg_exp) %>%
dplyr::summarise(n=n()) %>% arrange(desc(n))
barplot_df$`Curve Regulation` <- as.character(barplot_df$`Curve Regulation`)
barplot_df$`Curve Regulation`[1:4] <- "all"
barplot_df$reg_exp <- factor(barplot_df$reg_exp, levels = c('Elimusertib_','Elimusertib_up','Elimusertib_down',
'Ceralasertib_','Ceralasertib_up','Ceralasertib_down',
'Berzosertib_','Berzosertib_up','Berzosertib_down',
'Gartisertib_','Gartisertib_up','Gartisertib_down'))
df_temp <- curves %>% select(Gene_SitePos, GEM_updown, GEM_sign) %>% na.omit %>% unique
# Add GEM to datatable, needed for Supplementary Fig. 4a later
vector1 <- c("GEM", "all", "GEM_", length((df_temp$Gene_SitePos))) %>% as.data.frame %>% mutate(across(everything(as.character))) %>% t
vector2 <- c("GEM", "up", "GEM_up", sum(df_temp$GEM_updown == 'up')) %>% as.data.frame %>% mutate(across(everything(as.character))) %>% t
vector3 <- c("GEM", "down", "GEM_down", sum(df_temp$GEM_updown == 'down')) %>% as.data.frame %>% mutate(across(everything(as.character))) %>% t
colnames(vector1) <- colnames(barplot_df)
colnames(vector2) <- colnames(barplot_df)
colnames(vector3) <- colnames(barplot_df)
barplot_df <- barplot_df %>% as.data.frame %>% mutate(across(everything(as.character)))
barplot_df <- rbind(barplot_df, (vector1), (vector2), (vector3))
barplot_df$reg_exp <- factor(barplot_df$reg_exp, levels = c('GEM_', 'GEM_up', 'GEM_down',
'Elimusertib_','Elimusertib_up','Elimusertib_down',
'Ceralasertib_','Ceralasertib_up', 'Ceralasertib_down',
'Berzosertib_','Berzosertib_up','Berzosertib_down',
'Gartisertib_','Gartisertib_up','Gartisertib_down'))
barplot_df$n <- as.numeric(barplot_df$n)
# prepare table with SQ/TQ counts, first for ATRi and then for GEM
barplot_df_SQTQ <- curves %>% dplyr::filter(SQTQ==T) %>% group_by(Experiment, `Curve Regulation`, reg_exp) %>%
dplyr::summarise(n=n())%>% arrange(desc(n))
barplot_df_SQTQ$`Curve Regulation` <- as.character(barplot_df_SQTQ$`Curve Regulation`)
barplot_df_SQTQ$`Curve Regulation`[1:4] <- "all"
barplot_df_SQTQ$reg_exp <- factor(barplot_df_SQTQ$reg_exp, levels = c('Elimusertib_','Elimusertib_up','Elimusertib_down',
'Ceralasertib_','Ceralasertib_up','Ceralasertib_down',
'Berzosertib_','Berzosertib_up','Berzosertib_down',
'Gartisertib_','Gartisertib_up','Gartisertib_down'))
df_temp <- curves %>% dplyr::filter(SQTQ==T) %>% select(Gene_SitePos, GEM_updown, GEM_sign) %>% na.omit %>% unique
vector1 <- c("GEM", "all", "GEM_", length((df_temp$Gene_SitePos))) %>% t
vector2 <- c("GEM", "up", "GEM_up", sum(df_temp$GEM_updown == 'up')) %>% as.data.frame %>% mutate(across(everything(as.character))) %>% t
vector3 <- c("GEM", "down", "GEM_down", sum(df_temp$GEM_updown == 'down')) %>% as.data.frame %>% mutate(across(everything(as.character))) %>% t
colnames(vector1) <- colnames(barplot_df_SQTQ)
colnames(vector2) <- colnames(barplot_df_SQTQ)
colnames(vector3) <- colnames(barplot_df_SQTQ)
barplot_df_SQTQ <- barplot_df_SQTQ %>% as.data.frame %>% mutate(across(everything(as.character)))
barplot_df_SQTQ <- rbind(barplot_df_SQTQ, (vector1), (vector2), (vector3))
barplot_df_SQTQ$reg_exp <- factor(barplot_df_SQTQ$reg_exp, levels = levels(barplot_df$reg_exp))
barplot_df_SQTQ$n <- as.numeric(barplot_df_SQTQ$n)
# Plot 4 ATRi barplots
ggplot((barplot_df %>% dplyr::filter(Experiment != "GEM")), aes(fill=`Curve Regulation`, y=n, x=reg_exp)) +
geom_bar(position="stack", stat="identity", colour="grey30")+ scale_y_break(c(800,14000), scales =0.4 ) + ylim(0,18000)+
theme(legend.title=element_blank())+
scale_fill_manual(values = c("grey85",'#2171b5','#6baed6' ))+#c("grey85", "#0065bd", "grey40"))+
geom_bar(data=barplot_df_SQTQ%>% dplyr::filter(Experiment != "GEM"), aes(fill=`Curve Regulation`, y=n, x=reg_exp), position="stack", stat="identity", fill = 'red', colour="grey30")
# Plot GEM only barplots
ggplot((barplot_df %>% dplyr::filter(Experiment == "GEM")), aes(fill=`Curve Regulation`, y=n, x=reg_exp)) +
geom_bar(position="stack", stat="identity", colour="grey30")+ scale_y_break(c(800,14000), scales =0.4) + ylim(0,25000)+
theme(legend.title=element_blank())+
scale_fill_manual(values = c("grey85",'#2171b5','#6baed6' ))+#c("grey85", "#0065bd", "grey40"))+
geom_bar(data=barplot_df_SQTQ%>% dplyr::filter(Experiment == "GEM"), aes(fill=`Curve Regulation`, y=n, x=reg_exp), position="stack", stat="identity", fill = 'red', colour="grey30")
############################################################
# Supplementary Fig. 3b + Supplementary Fig. 4a (pie charts)
############################################################
pie_temp <- barplot_df %>% arrange(reg_exp)
pie_temp2 <- barplot_df_SQTQ %>% arrange(reg_exp)
pie_temp$n_SQTQ <- pie_temp2$n
pie_temp$fraction_SQTQ <- pie_temp$n_SQTQ/pie_temp$n
pie_temp$fraction_nonSQTQ <- 1-pie_temp$fraction_SQTQ
ratios_for_pieplot <- data.frame(as.list(pie_temp$fraction_SQTQ)) %>% t %>% as.data.frame()
ratios_for_pieplot$V2 <- 1-ratios_for_pieplot$V1
ratios_for_pieplot$experiment <- rownames(ratios_for_pieplot)
# plot for four ATRi and GEM
ggplot(pie_temp %>% pivot_longer(c(fraction_nonSQTQ, fraction_SQTQ)), aes(x=1, y=value, fill = name)) +
geom_col() +
coord_polar("y", start=0)+
scale_fill_manual(values=c("grey70", "red"))+
theme_void()+
theme(text=element_text(size=12, color = 'black'),
legend.key.size = unit(0.2,"line"),)+
facet_wrap('reg_exp', ncol = 3)
############################################################
# Supplementary Fig. 3c (barplots)
############################################################
# plot all p-sites
barplot_df <- curves %>% dplyr::filter(ATRi_count_regulated >0) %>% dplyr::select(ATRi_count_regulated, Gene_SitePos) %>% distinct %>% group_by(ATRi_count_regulated) %>% dplyr::summarise(n=n())%>% arrange(desc(n))
barplot_df <- rbind(barplot_df, setNames(data.frame("3_4", barplot_df$n[3]+barplot_df$n[4]), names(barplot_df))) %>% dplyr::filter(ATRi_count_regulated %in% c(1,2, "3_4"))
ggplot(barplot_df, aes(y=n, x=ATRi_count_regulated)) +
geom_bar(position="stack", stat="identity", fill="grey80", color = 'black')+
theme(legend.title=element_blank())+ scale_y_continuous(expand = c(0, 0), limits = c(0,1500)) +
geom_text(aes(label=n), vjust=0, angle = 90, hjust = 0)
# plot SQTQ p-sites only
barplot_df <- curves %>% dplyr::filter(ATRi_count_regulated >0 & SQTQ==T) %>% dplyr::select(ATRi_count_regulated, Gene_SitePos) %>% distinct %>% group_by(ATRi_count_regulated) %>% dplyr::summarise(n=n())%>% arrange(desc(n))
barplot_df <- rbind(barplot_df, setNames(data.frame("3_4", barplot_df$n[3]+barplot_df$n[4]), names(barplot_df))) %>% dplyr::filter(ATRi_count_regulated %in% c(1,2, "3_4"))
ggplot(barplot_df, aes(y=n, x=ATRi_count_regulated)) +
geom_bar(position="stack", stat="identity", fill="grey80", color = 'black')+
theme(legend.title=element_blank())+ scale_y_continuous(expand = c(0, 0), limits = c(0,100)) +
geom_text(aes(label=n), vjust=0, angle = 90, hjust = 0)
############################################################
# Supplementary Fig. 4c (Venn diagrams)
############################################################
# plot all p-sites
venn_temp <- curves %>% dplyr::select(Gene_SitePos, ATRi_updown_atleast3, GEM_sign)%>% unique #dplyr::filter(ATRi_count_regulated >0) %>% unique
venn_temp$GEM_sign[is.na(venn_temp$GEM_sign)] <- FALSE
venn_temp %>% group_by(ATRi_updown_atleast3, GEM_sign) %>% count
set1 <- venn_temp %>% dplyr::filter(ATRi_updown_atleast3 != "") %>% dplyr::pull(`Gene_SitePos`)
set2 <- venn_temp %>% dplyr::filter(GEM_sign ==T) %>% dplyr::pull(`Gene_SitePos`)
dev.off()
venn_plot <- venn.diagram(
x = list(set1, set2),
category.names = c("atleast3ATRi", "GEM"),
filename = NULL,
output=T,
lwd = 1.5,
lty = 'blank',
fill = c( '#3070B3','grey'),
cex = 2,
fontface = "bold",
fontfamily = "sans",
cat.cex = 0.6,
cat.default.pos = "outer",
cat.fontfamily = "sans"
)
grid.draw(venn_plot)
# plot SQTQ p-sites only
venn_temp <- curves %>% dplyr::filter(SQTQ ==T) %>% dplyr::select(Gene_SitePos, ATRi_updown_atleast3, GEM_sign)%>% unique #dplyr::filter(ATRi_count_regulated >0) %>% unique
venn_temp$GEM_sign[is.na(venn_temp$GEM_sign)] <- FALSE
venn_temp %>% group_by(ATRi_updown_atleast3, GEM_sign) %>% count
set1 <- venn_temp %>% dplyr::filter(ATRi_updown_atleast3 != "") %>% dplyr::pull(`Gene_SitePos`)
set2 <- venn_temp %>% dplyr::filter(GEM_sign ==T) %>% dplyr::pull(`Gene_SitePos`)
dev.off()
venn_plot <- venn.diagram(
x = list(set1, set2),
category.names = c("atleast3ATRi", "GEM"),
filename = NULL,
output=T,
lwd = 1.5,
lty = 'blank',
fill = c( '#3070B3','grey'),
cex = 2,
fontface = "bold",
fontfamily = "sans",
cat.cex = 0.6,
cat.default.pos = "outer",
cat.fontfamily = "sans"
)
grid.draw(venn_plot)
dev.off()
############################################################
# Fig. 4a (scatterplot, pEC50 vs FC four ATRi)
############################################################
curves$Experiment <- factor(curves$Experiment, levels = c("Elimusertib", "Gartisertib" , "Berzosertib", "Ceralasertib"))
ggplot(curves %>% filter(ATRi_regulated == T & SQTQ ==F), aes(y=pEC50, x=`Curve Fold Change`)) +
geom_point(size = 0.75, color='grey70', pch = 16)+
geom_point(size = 0.75, data = curves %>% filter(ATRi_regulated == T & SQTQ ==T), aes(y=pEC50, x=`Curve Fold Change`), color='red', pch = 16)+
scale_x_continuous(limits=c(-6.6,6.6), breaks = seq(-6,6,2))+
scale_y_continuous(limits=c(5,9))+
theme_classic()+
theme(text=element_text(size=6, color = 'black'),
axis.text.x=element_text(angle = 0, hjust = 0.5),
axis.line = element_line(colour = 'black', size = 0.1),
axis.ticks = element_line(size = 0.1),
axis.ticks.length=unit(.05, "cm"),
panel.border = element_rect(colour = "black", fill=NA, size=0,1),
strip.background = element_blank())+
geom_text_repel(data = curves %>% dplyr::filter(Gene_SitePos %in% c("CHEK1_S317", "BRCA1_S1239","FANCD2_S319", "TOPBP1_S1504")),
aes(label=Gene_SitePos),
nudge_x = -4.5,
size = 1,
box.padding = 0.5,
force = 100,
segment.size = 0.2,
direction = "y",
hjust = "left")+
facet_wrap('Experiment', nrow=2, scales='free')
############################################################
# Fig. 4c (pEC50 distribution four ATRi)
############################################################
col_assignment <- c("#005293", "#999999", "grey30", "#64a0c8")
names(col_assignment) <- c( "Elimusertib" , "Ceralasertib" ,"Berzosertib", "Gartisertib" )
curves %>% filter(ATRi_regulated ==T & SQTQ == T) %>% group_by(Experiment) %>% tally
ggplot(curves %>% filter(ATRi_regulated ==T & SQTQ == T), aes(x=pEC50, colour = Experiment)) +
geom_density(alpha = 0.5,size = 1)+
theme_classic()+
theme(legend.position=c(0.8,0.85), legend.title=element_blank(),
legend.key.size = unit(0.5,"line"),
text=element_text(size=10, color = 'black'),
axis.text.x=element_text(angle = 0, hjust = 0.5, size=10),
axis.text.y=element_text( size=10),
axis.line = element_line(colour = 'black', size = 0.1),
axis.ticks = element_line(size = 0.1),
axis.ticks.length=unit(.05, "cm"),
panel.border = element_rect(colour = "black", fill=NA, size=0,1))+
xlab("pEC50 [M]")+ ylab("Density")+
scale_color_manual(values=col_assignment) +
scale_x_reverse(expand = c(0,0),limits = c(10.2,3.8), breaks = seq(4,10, by = 1))+
scale_y_continuous(expand = c(0, 0), breaks = seq(0, 1, by = 0.5), limits = c(0,1.2))
############################################################
# Fig. 5a (scatterplot, pEC50 vs FC, GEM and >= 3 ATRi)
############################################################
ggplot(curves %>% filter(GEM_sign ==T & SQTQ ==F & ATRi_count_regulated <= 2) %>% distinct(GEM_qvalue, GEM_log2FC, Gene_SitePos),
aes(y=-log10(GEM_qvalue), x=GEM_log2FC)) +
theme_classic()+
geom_hline(yintercept=-log10(0.01), col = 'black', size = 0.1)+
geom_vline(xintercept=c(-1,1), col = 'black', size = 0.1)+
geom_point(size = 1.5, color='grey80', pch = 16)+
geom_point(size = 1.5, data = curves %>% filter(GEM_sign ==T & SQTQ ==T & ATRi_count_regulated <= 2) %>% distinct(GEM_qvalue, GEM_log2FC, Gene_SitePos),
aes(y=-log10(GEM_qvalue), x=GEM_log2FC), color='#f9a19a', pch = 16)+
scale_x_continuous(limits=c(-5,5), breaks = seq(-5,5,1))+
scale_y_continuous(limits=c(1.5,8), breaks = seq(2,8,1))+
theme(text=element_text(size=8, color = 'black'),
axis.text.x=element_text(angle = 0, hjust = 0.5, size=10),
axis.text.y=element_text( size=10),
axis.line = element_line(colour = 'black', size = 0.1),
axis.ticks = element_line(size = 0.1),
axis.ticks.length=unit(.05, "cm"),
panel.border = element_rect(colour = "black", fill=NA, size=0,1))+
geom_point(curves %>% filter(GEM_sign ==T & ATRi_count_regulated >2 & SQTQ ==F) %>% distinct(GEM_qvalue, GEM_log2FC, Gene_SitePos),
mapping = aes(y=-log10(GEM_qvalue), x=GEM_log2FC),
size = 1.5, color = 'grey40', pch = 16)+
geom_point(curves %>% filter(GEM_sign ==T & ATRi_count_regulated >2 & SQTQ ==T) %>% distinct(GEM_qvalue, GEM_log2FC, Gene_SitePos),
mapping = aes(y=-log10(GEM_qvalue), x=GEM_log2FC),
size = 1.5, color = 'red', pch = 16) +
geom_text_repel(data = curves %>%
dplyr::filter(Gene_SitePos %in% c("CHEK1_S317", "CHEK1_S468", "FANCD2_S319", "TOPBP1_S1504", "NBN_S397", "NBN_S615","UIMC1_S171", "BRCA1_1239", "EXO1_S714", "H2AFX_S139")) %>%
distinct(GEM_qvalue, GEM_log2FC, Gene_SitePos),
aes(label=Gene_SitePos),
nudge_x = 4.5,
size = 2,
box.padding = 0.5,
force = 100,
segment.size = 0.2,
direction = "y",
hjust = "right")+
geom_text_repel(data = curves %>%
dplyr::filter(Gene_SitePos %in% c("HIST1H1E_T146", "HIST1H1D_T147", "HIST1H1C_T146", "HIST1H1D_T18", "HIST1H1E_T18", "MYBL2_T494","MKI67_T761","NIFK_T223", "PRC1_T481", "TPX_T72")) %>%
distinct(GEM_qvalue, GEM_log2FC, Gene_SitePos),
aes(label=Gene_SitePos),
nudge_x = -4.5,
size = 2,
box.padding = 0.5,
force = 100,
segment.size = 0.2,
direction = "y",
hjust = "left")
############################################################
# Supplementary Fig. 4b (Heatmap)
############################################################
heatmap_df <- curves %>% dplyr::filter(combi_regulation == 'GEMup_ATRidown' & SQTQ ==T)
hotlist <- unique(heatmap_df$Gene_SitePos)
heatmap_df <- heatmap_df %>% dplyr::filter(Gene_SitePos %in% hotlist)
heatmap_df$GEM <- heatmap_df$GEM_ratio_mean
heatmap_df$GEM <- 2^heatmap_df$GEM_log2FC
heatmap_df$vehicle <- 1
heatmap_df$ATRi <- 2^(heatmap_df$`Curve Fold Change`)*heatmap_df$GEM
regulated_annotation <- heatmap_df %>% dplyr::select(Experiment, Gene_SitePos, ATRi_regulated)
regulated_annotation$regulated <- ifelse(regulated_annotation$ATRi_regulated ==F, "*", "")
heatmap_df <- heatmap_df %>% dplyr::select(vehicle, GEM, ATRi, Experiment, Gene_SitePos) %>%
pivot_wider(names_from = Experiment, values_from = ATRi) %>%
pivot_longer(-c(Gene_SitePos), names_to = "Experiment", values_to = "values")
heatmap_df <- merge(heatmap_df, regulated_annotation, by=c('Experiment', 'Gene_SitePos'), all.x = T)
heatmap_df$Gene_SitePos <- gsub("_", "-",heatmap_df$Gene_SitePos)
Gene_sorted <- heatmap_df %>% dplyr::filter(Experiment == "GEM") %>% arrange((values)) %>% pull(Gene_SitePos)
Experiments_sorted <- c("vehicle", "GEM", "Elimusertib", "Gartisertib", "Berzosertib", "Ceralasertib")
ggplot(heatmap_df, aes(factor(Experiment, levels = Experiments_sorted), factor(Gene_SitePos, levels= Gene_sorted))) +
geom_tile(aes(fill = log2(values)), colour = "black") +
theme_minimal()+
scale_fill_gradient2(low = "blue",
mid = "white",
high = "#FF0000",midpoint = 0) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1), #, panel.border = element_rect(colour = "grey", fill=NA, size=1), axis.line = element_line(colour = "black"),
axis.title = element_blank(),axis.text = element_text(size =10, color="black"),
legend.text= element_text(size = 12, color="black"),
legend.title = element_text(size = 12, face = "bold"))+
coord_fixed()+
geom_text(aes(label=regulated))
############################################################
# Fig. 4b, Fig. 5b, and Supplementary Fig. 4d (decryptM PTM response curves)
############################################################
col_assignment <- c("#005293", "#999999", "grey30", "#64a0c8")
names(col_assignment) <- c( "Elimusertib" , "Ceralasertib" ,"Berzosertib", "Gartisertib" )
symbols_assignment <- c(16,16,16,16)
names(symbols_assignment) <- c( "Elimusertib" , "Ceralasertib" ,"Berzosertib", "Gartisertib" )
# Function for curve fit: B is vector with four parameters. x is many x values
LL.4.function <- function(B, x) {
(B[2]-B[3])/(1 + 10^(B[4] * (x - log10(B[1])))) + B[3]
}
xlim.max <- 10000*1.05
xlim.min <- 0.5
doses = c(0, 1, 3, 10, 30, 100, 300, 1000, 3000, 10000)
doses_rev <- rev(doses)
curves_targets <- curves %>% dplyr::filter(combi_regulation == 'GEMup_ATRidown' & SQTQ==T)
peptides <- unique(curves_targets$Gene_SitePos)
proteins <- unique(curves_targets$`Gene names`)
nf <- layout(matrix(c(1:8), ncol = 2, nrow = 4, byrow=TRUE),
widths=c(1), heights =c(1,1,1,1))
for(k in 1:length(peptides)){
df_plots <- curves %>% dplyr::filter(Gene_SitePos %in% peptides[k])
df_plots_ratios <- df_plots %>% dplyr::select(contains("Ratio "), Experiment) #, starts_with("Curve")
colnames(df_plots_ratios) <- c(rev(doses), "Experiment")
df_plots_ratios <- df_plots_ratios %>% pivot_longer(cols = colnames(df_plots_ratios)[1:length(doses)])
colnames(df_plots_ratios) <- c("Experiment", "dose", "response")
legendtext <- ""
if(sum(is.na(df_plots_ratios$response))<nrow(df_plots_ratios)){
ylim_max <- 1
ylim <- c(0,1.3)
ylabels <- seq(0, 1, by = 0.5)
drugs <- as.character(unique(df_plots_ratios$Experiment)) %>% sort
par(tck = -.025, mgp = c(5, 0.8, 0), mar =c(5.5,5.5,6,8.5))
plot(1, type="n", xlab="", ylab="", xlim = c(xlim.min, xlim.max), ylim = ylim, log = 'x',
axes = F, legend = T, main = "", cex.main = 1.2)
abline(h = 1/(2^df_plots$GEM_log2FC[1]), col= "red")
for(n in 1:length(drugs)){
legendtext[n] <- drugs[n]
cols <- col_assignment[drugs[n]]
symbols <- symbols_assignment[drugs[n]]
add = TRUE
df_plots_ratios_temp <- df_plots_ratios %>% dplyr::filter(Experiment %in% drugs[n])
df_plots_ratios_temp$dose[df_plots_ratios_temp$dose == 0] <- "0.03"
points(x = df_plots_ratios_temp$dose %>% as.numeric, y = (df_plots_ratios_temp$response), col = cols,
cex = 2, lwd = 2,
bg = cols,
lty =1,
pch = symbols,
xlim = c(xlim.min, xlim.max), ylim = ylim)
df_plots_param <- df_plots %>% dplyr::filter(Experiment %in% drugs[n])
if(!is.na(df_plots_param$`Curve R2`)){
four.parameters <- df_plots_param %>% dplyr::select(c('pEC50','Curve Front', 'Curve Back', 'Curve Slope'))
four.parameters[1,1] <- 10^(-four.parameters[1,1])*1000000000
four.parameters <- t(four.parameters) # Make numeric vector out of it. Leave out R2
many.x.values <- c(seq(0.5, 1, by = 0.05), seq(1, 10, by = 0.1),seq(10, 100, by = 1), seq(100, 1000, by = 2),seq(1000, 13000, by = 100))
y.fitted.curve <- LL.4.function(four.parameters, log10(many.x.values))
lines(many.x.values, (y.fitted.curve), type = "l", log = "x", col = cols, lwd = 3)
}
}
mtext(side=3, line=2, cex=1, gsub("_", "-p",unique(as.character(df_plots_param$`Gene_SitePos`))), font = 2)
mtext(side=3, line=0.6, cex=0.8, unique(as.character(df_plots_param$`ModSeqShort`)))
box(bty="l")
unique_doses <- df_plots_ratios_temp$dose
axis(1, at =unique_doses[c(1,3,5,7,9,10)], labels=c(10000,1000,100,10,1, 0), cex.axis =1.2)
axis(2, at =ylabels, labels=ylabels, cex.axis =1.2, las = 2)
title(xlab="1 ??M GEM + ATRi [nM]", ylab="PTM Response\n normalized to 1 ??M GEM", mgp = c(2.6, 1, 0), cex.lab = 1.2)
legend('topleft',inset =c(1.02,0), legend = c(legendtext, "Vehicle"),
plot = T, xpd = T, title = as.expression(bquote(bold("ATR inhibitor"))),
lty =1, cex=1, pch = c(symbols_assignment[drugs],NA), bty="n", horiz = F, col = c(col_assignment[drugs], "red"))
}
}