-
Notifications
You must be signed in to change notification settings - Fork 90
/
xception_test.py
88 lines (73 loc) · 3.99 KB
/
xception_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import xception
slim = tf.contrib.slim
class XceptionTest(tf.test.TestCase):
def testBuild(self):
batch_size = 5
height, width = 299, 299
num_classes = 1001
with self.test_session():
inputs = tf.random_uniform((batch_size, height, width, 3))
logits, end_points = xception.xception(inputs, num_classes)
#Entry Flow
self.assertEquals(end_points['Xception/block1_res_conv'].get_shape().as_list(), [5, 74, 74 ,128])
self.assertEquals(end_points['Xception/block2_res_conv'].get_shape().as_list(), [5, 37, 37, 256])
self.assertEquals(end_points['Xception/block3_res_conv'].get_shape().as_list(), [5, 19, 19, 728])
#Mid Flow
self.assertEquals(end_points['Xception/block5_dws_conv3'].get_shape().as_list(), [5, 19, 19, 728])
self.assertEquals(end_points['Xception/block6_dws_conv3'].get_shape().as_list(), [5, 19, 19, 728])
self.assertEquals(end_points['Xception/block7_dws_conv3'].get_shape().as_list(), [5, 19, 19, 728])
self.assertEquals(end_points['Xception/block8_dws_conv3'].get_shape().as_list(), [5, 19, 19, 728])
self.assertEquals(end_points['Xception/block9_dws_conv3'].get_shape().as_list(), [5, 19, 19, 728])
self.assertEquals(end_points['Xception/block10_dws_conv3'].get_shape().as_list(), [5, 19, 19, 728])
self.assertEquals(end_points['Xception/block11_dws_conv3'].get_shape().as_list(), [5, 19, 19, 728])
self.assertEquals(end_points['Xception/block12_dws_conv3'].get_shape().as_list(), [5, 19, 19, 728])
self.assertEquals(end_points['Xception/block12_res_conv'].get_shape().as_list(), [5, 10, 10, 1024])
#Exit Flow
self.assertEquals(end_points['Xception/block14_dws_conv1'].get_shape().as_list(), [5, 10, 10, 1536])
self.assertEquals(end_points['Xception/block14_dws_conv2'].get_shape().as_list(), [5, 10, 10, 2048])
self.assertEquals(end_points['Xception/block15_avg_pool'].get_shape().as_list(), [5, 1, 1, 2048])
self.assertEquals(end_points['Xception/block15_conv1'].get_shape().as_list(), [5, 1, 1, 2048])
self.assertEquals(end_points['Xception/block15_conv2'].get_shape().as_list(), [5, 1, 1, 1001])
#Check outputs
self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes])
self.assertListEqual(end_points['Predictions'].get_shape().as_list(), [batch_size, num_classes])
def testEvaluation(self):
batch_size = 1
height, width = 299, 299
num_classes = 1001
with self.test_session():
eval_inputs = tf.random_uniform((batch_size, height, width, 3))
logits, _ = xception.xception(eval_inputs, is_training=False)
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
predictions = tf.argmax(logits, 1)
self.assertListEqual(predictions.get_shape().as_list(), [batch_size])
def testForward(self):
batch_size = 1
height, width = 299, 299
with self.test_session() as sess:
inputs = tf.random_uniform((batch_size, height, width, 3))
logits, _ = xception.xception(inputs)
sess.run(tf.global_variables_initializer())
output = sess.run(logits)
self.assertTrue(output.any())
if __name__ == '__main__':
tf.test.main()