-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
304 lines (238 loc) · 8.46 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
#%%
from torch.utils.tensorboard import SummaryWriter
import os, glob
import logging
import time
import argparse
from natsort import natsorted
import numpy as np
import matplotlib.pyplot as plt
import nibabel as nib
import torch
from torch.utils.data import DataLoader, Dataset
from torchsummary import summary
from monai.transforms import (
Compose,
LoadImaged,
Orientationd,
RandFlipd,
RandSpatialCropd,
Spacingd,
EnsureChannelFirstd,
EnsureTyped,
EnsureType,
)
from utils import compute_euclidean_distance_map
from models import UNetPooling, UNetStriding
root_dir = os.getcwd()
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--name', type=str, required=True, help='Name the model you are training.')
parser.add_argument('--epochs', default=100, type=int , help='Set max number of epochs.')
parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float, help='Set the initial learning rate to be used with the reduced step scheduler.')
parser.add_argument('--model', type=str, default='pooling', help='Set which model to use. Options are pooling or striding.')
args = parser.parse_args()
return args
if torch.cuda.is_available():
os.environ["CUDA_VISIBILE_DEVICES"] = "0,1"
device = torch.device("cuda")
num_gpus = torch.cuda.device_count()
print(f"\nUsing {num_gpus} gpus.\n\n")
workers = 2*num_gpus
else:
device = torch.device("cpu")
num_gpus = 0
print("\nUsing ", device)
workers = 1
#seg = nib.load("../data/DeepVesselNet/seg/1.nii.gz")
#cen = nib.load("../data/DeepVesselNet/centerline/1.nii.gz")
#map = compute_euclidean_distance_map(seg,cen)
#
#plt.figure(figsize=(12,12))
#plt.imshow(map[:,:,50], vmax = np.max(map))
#plt.colorbar()
#plt.show()
#%%
# when running as main
args = parse_args()
run_name = args.name
model_type = args.model
learning_rate = args.lr
max_epochs = args.epochs
# jupyter
#run_name = "unet-striding-residualV2"
#model_type = "striding"
#learning_rate = 1e-3
#max_epochs = 100
# dataloader
batch_size = 4
# training
decay_learning_rate = True
# enable cuDNN benchmark
torch.backends.cudnn.benchmark = True
USE_AMP = False
#%%
logging.basicConfig(filename="../logs/"+run_name+".log",
filemode='a',
format='%(levelname)s %(message)s',
datefmt='%H:%M:%S',
level=logging.DEBUG)
# print info to screen
logging.info("Running "+run_name)
logging.info(f" learning rate: {learning_rate}")
logging.info(f" batch size: {batch_size}")
#%% ---------------------------------------------------------------------------
# load images from data directories
#!! Load training images and targets into a dictionary
segs = natsorted(glob.glob(os.path.join(root_dir,"../data/DeepVesselNet/seg/*.nii.gz")))
maps = natsorted(glob.glob(os.path.join(root_dir,"../data/DeepVesselNet/map/*.nii.gz")))
data = [{"image": seg, "label": map} for seg, map in zip(segs,maps)]
class SyntheticVesselDataset(Dataset):
def __init__(self, img_label_list, transform=None):
self.img_label_list = img_label_list
self.transform = transform
def __len__(self):
return len(self.img_label_list)
def __getitem__(self, idx):
if self.transform:
img_label = self.transform(self.img_label_list[idx])
else:
img_label = self.img_label_list[idx]
return img_label
#%%
# transforms
train_transform = Compose(
[
LoadImaged(keys=["image", "label"]),
EnsureChannelFirstd(keys=["image","label"]),
Orientationd(keys=["image", "label"], axcodes="RAS"),
Spacingd(
keys=["image", "label"],
pixdim=(1.0, 1.0, 1.0),
mode=("bilinear", "nearest"),
),
RandSpatialCropd(keys=["image","label"], roi_size=(128,128,128), random_size=False),
RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=0),
RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=1),
RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=2),
EnsureTyped(keys=["image", "label"]),
]
)
val_transform = Compose(
[
LoadImaged(keys=["image", "label"]),
EnsureChannelFirstd(keys=["image","label"]),
Orientationd(keys=["image", "label"], axcodes="RAS"),
Spacingd(
keys=["image", "label"],
pixdim=(1.0, 1.0, 1.0),
mode=("bilinear", "nearest"),
),
RandSpatialCropd(keys=["image","label"], roi_size=(128,128,128), random_size=False),
EnsureTyped(keys=["image", "label"]),
]
)
inference_transform = Compose(
[EnsureType()]
)
#%%
# instantiate model, loss, and inference
if model_type=="striding":
model = UNetStriding(feat_channels=[8,32,32,64,128])
elif model_type=="pooling":
model = UNetPooling(feat_channels=[8,32,32,64,128])
else:
raise ValueError(f"Did not choose a valid type of model. Options are striding or pooling.")
if num_gpus > 1:
model = torch.nn.DataParallel(model, device_ids=[0, 1])
model.to(device)
logging.info(model)
def masked_mse_loss(predict, target, mask):
loss = torch.sum(((predict-target)*mask)**2.0) / torch.sum(mask)
return loss
loss_function = torch.nn.MSELoss()
#%%
# create dataloaders
train_size = int(0.8*len(data))
val_size = len(data) - train_size
train_data, val_data = torch.utils.data.random_split(data, [train_size, val_size])
train_dataset = SyntheticVesselDataset(train_data, transform=train_transform)
train_loader = DataLoader(
train_dataset, batch_size=batch_size, num_workers=workers, pin_memory=torch.cuda.is_available()
)
val_dataset = SyntheticVesselDataset(val_data, transform=val_transform)
val_loader = DataLoader(
val_dataset, batch_size=batch_size, num_workers=workers, pin_memory=torch.cuda.is_available()
)
#%%
# train
writer = SummaryWriter('../runs/' + run_name)
# use amp to accelerate training
if USE_AMP:
scaler = torch.cuda.amp.GradScaler()
optimizer = torch.optim.Adam(model.parameters(), learning_rate, weight_decay=1e-5)
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=max_epochs)
start = time.time()
for epoch in range(max_epochs):
model.train()
current_learning_rate = optimizer.param_groups[0]["lr"]
# perform epoch training step
train_loss = 0
step = 0
for batch_data in train_loader:
step += 1
train_images, train_maps = (
batch_data["image"].to(device),
batch_data["label"].to(device),
)
optimizer.zero_grad()
if USE_AMP:
with torch.cuda.amp.autocast():
train_outputs = model(train_images)
#loss = loss_function(train_outputs, train_maps, train_images)
loss = loss_function(train_outputs, train_maps)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
else:
train_outputs = model(train_images)
#loss = loss_function(train_outputs, train_maps, train_images)
loss = loss_function(train_outputs, train_maps)
loss.backward()
optimizer.step()
train_loss += loss.item()
# calculate metrics
train_loss /= step
writer.add_scalar("training loss", train_loss, epoch + 1)
writer.add_scalar("learning rate", current_learning_rate, epoch + 1)
if decay_learning_rate:
lr_scheduler.step()
model.eval()
with torch.no_grad():
val_loss = 0
step = 0
for val_data in val_loader:
step += 1
val_images, val_maps = (
val_data["image"].to(device),
val_data["label"].to(device),
)
val_outputs = model(val_images)
#loss = loss_function(val_outputs, val_maps, val_images)
loss = loss_function(val_outputs, val_maps)
val_loss += loss.item()
val_loss /= step
writer.add_scalar("validation loss", train_loss, epoch + 1)
logging.info(f"[{epoch+1:3d}/{max_epochs:3d}] train loss: {train_loss:.3e} val loss: {val_loss:.3e}")
print(f"[{epoch+1:3d}/{max_epochs:3d}] train loss: {train_loss:.3e} val loss: {val_loss:.3e}\n")
if epoch == 0:
prev_best = val_loss
if val_loss < prev_best:
save_path = "../trained_models/" + run_name + ".pth"
torch.save(model.state_dict(), save_path)
prev_best = val_loss
end = time.time()
logging.info(f"Training took {end-start:.1f} seconds.")
writer.flush()
writer.close()
#%%