New features
- Add support for using
scipy.sparse.csr_matrix
as datastructure for covariatesX
.
New features
- Add abstract method :meth:`~metalearners.metalearner.MetaLearner.predict_conditional_average_outcomes` to :class:`~metalearners.metalearner.MetaLearner`.
- Implement :meth:`~metalearners.rlearner.RLearner.predict_conditional_average_outcomes` for :class:`~metalearners.rlearner.RLearner`.
Bug fixes
- Fix bug in which the :class:`~metalearners.slearner.SLearner`'s inference step would have some leakage in the in-sample scenario.
New features
- Add :meth:`metalearners.metalearner.MetaLearner.init_args`.
- Add :class:`metalearners.utils.FixedBinaryPropensity`.
- Add
_build_onnx
to :class:`metalearners.MetaLearner` abstract class and implement it for :class:`metalearners.TLearner`, :class:`metalearners.XLearner`, :class:`metalearners.RLearner` and :class:`metalearners.DRLearner`. - Add
_necessary_onnx_models
to :class:`metalearners.MetaLearner`. - Add :meth:`metalearners.metalearner.DRLearner.average_treatment_effect` to compute the AIPW point estimate and standard error for _average treatment effects (ATE)_ without requiring a full model fit.
New features
- Add :meth:`metalearners.metalearner.MetaLearner.fit_all_nuisance` and :meth:`metalearners.metalearner.MetaLearner.fit_all_treatment`.
- Add optional
store_raw_results
andstore_results
parameters to :class:`metalearners.grid_search.MetaLearnerGridSearch`. - Renamed :class:`metalearners.grid_search._GSResult` to :class:`metalearners.grid_search.GSResult`.
- Added
grid_size_
attribute to :class:`metalearners.grid_search.MetaLearnerGridSearch`. - Implement :meth:`metalearners.cross_fit_estimator.CrossFitEstimator.score`.
Bug fixes
- Fixed a bug in :meth:`metalearners.metalearner.MetaLearner.evaluate` where it failed
in the case of
feature_set
being different fromNone
.
New features
- Add optional
adaptive_clipping
parameter to :class:`metalearners.DRLearner`.
Other changes
- Change the index columns order in
MetaLearnerGridSearch.results_
. - Raise a custom error if only one class is present in a classification outcome.
- Raise a custom error if there are some treatment variants which have seen classification outcomes which have not appeared for some other treatment variant.
New features
- Implement :class:`metalearners.grid_search.MetaLearnerGridSearch`.
- Add a
scoring
parameter to :meth:`metalearners.metalearner.MetaLearner.evaluate` and implement the abstract method for the :class:`metalearners.XLearner` and :class:`metalearners.DRLearner`.
Other changes
- Increase lower bound on
scikit-learn
from 1.3 to 1.4. - Drop the run dependency on
git_root
.
- No longer raise an error if
feature_set
is provided to :class:`metalearners.SLearner`. - Fix a bug where base model dictionaries -- e.g.
n_folds
orfeature-set
-- were improperly initialized if the provided dictionary's keys were a strict superset of the expected keys.
- Ship license file.
- Fix dependencies for pip.
- Implemented :meth:`metalearners.cross_fit_estimator.CrossFitEstimator.clone`.
- Added
n_jobs_base_learners
to :meth:`metalearners.metalearner.MetaLearner.fit`. - Renamed :meth:`metalearners.explainer.Explainer.feature_importances`. Note this is a breaking change.
- Renamed :meth:`metalearners.metalearner.MetaLearner.feature_importances`. Note this is a breaking change.
- Renamed :meth:`metalearners.explainer.Explainer.shap_values`. Note this is a breaking change.
- Renamed :meth:`metalearners.metalearner.MetaLearner.shap_values`. Note this is a breaking change.
- Renamed :meth:`metalearners.metalearner.MetaLearner.explainer`. Note this is a breaking change.
- Implemented
synchronize_cross_fitting
parameter for :meth:`metalearners.metalearner.MetaLearner.fit`. - Implemented
cv
parameter for :meth:`metalearners.cross_fit_estimator.fit`.
- Implemented :class:`metalearners.explainer.Explainer` with support for binary classification and regression outcomes and discrete treatment variants.
- Integration of :class:`metalearners.explainer.Explainer` with :class:`metalearners.metalearner.MetaLearner` for feature importance and SHAP values calculations.
- Implemented model reusage through the
fitted_nuisance_models
andfitted_propensity_model
parameters of :class:`metalearners.metalearner.MetaLearner`. - Allow for
fit_params
in :meth:`metalearners.metalearner.MetaLearner.fit`.
Beta release with
- :class:`metalearners.DRLearner` with support for binary classification and regression outcomes and discrete treatment variants.
- Generalization of :class:`metalearners.TLearner`, :class:`metalearners.XLearner` and :class:`metalearners.RLearner` to allow for more than two discrete treatment variants.
- Unification of shapes returned by
predict
methods. - :func:`metalearners.utils.simplify_output` and :func:`metalearners.utils.metalearner_factory`.
Alpha release with
- :class:`metalearners.TLearner` with support for binary classification and regression outcomes and binary treatment variants.
- :class:`metalearners.SLearner` with support for binary classification and regression outcomes and discrete treatment variants.
- :class:`metalearners.XLearner` with support for binary classification and regression outcomes and binary treatment variants.
- :class:`metalearners.RLearner` with support for binary classification and regression otucomes and binary treatment variants.