-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathquick_data.py
105 lines (86 loc) · 3.98 KB
/
quick_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import torch
import fasttext
import os
import random
import torch.utils.data as data
import torchvision.transforms as transforms
import pickle
from string import digits
from PIL import Image
folder = "mini_TAGAN_data_"
FT_file = "TAGAN_data/cc.en.300.bin"
img_files = "/images"
caption_files = "/text_c10"
classes_file = "TAGAN_data/classes.txt"
img_transform = transforms.Compose([transforms.Resize((136,136)),
transforms.RandomCrop(128),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(10),
transforms.ToTensor()])
def load_dataset(img_files, caption_files, classes_file):
output = {}
with open(classes_file) as f:
classes = f.readlines()
i = 1
for class_name in classes:
print(class_name)
#This part is just to edit caption file from CUB, if we make our own it may not be needed
class_name = class_name.rstrip("\n")
class_name = class_name.lstrip(digits)
class_name = class_name.lstrip(" ")
if i % 5 == 0:
folder_num = i // 5
else:
folder_num = i // 5 + 1
folder = "mini_TAGAN_data_"
img_files = "/images"
caption_files = "/text_c10"
folder = folder + str(folder_num)
caption_files = folder + caption_files
img_files = folder + img_files
captions = os.listdir(os.path.join(caption_files,class_name))
for caption in captions:
if not(caption.startswith("._")):
image_path = os.path.join(img_files, class_name, caption.replace("txt", "jpg"))
caption_path = os.path.join(caption_files, class_name, caption)
if not(caption_path.startswith("._")):
with open(caption_path, 'r') as f2:
#print(caption_path)
caption_list = f2.readlines()
#Might need to strip newline char here
#print(caption_list)
embedding = get_word_embedding(caption_list)
#temp_caption_path = "TAGAN_data" + caption_files + class_name + caption
temp_caption_path = '{}/{}/{}/{}'.format("TAGAN_data", "text_c10", class_name, caption)
print(temp_caption_path)
output[temp_caption_path] = get_word_embedding(caption_list)
f2.close()
i += 1
f.close()
f3 = open(folder + "caption_embedding" + str(folder_num) + ".pkl","wb")
pickle.dump(output,f3)
return output
def get_word_embedding(caption_list):
#Need to have the length of the description for something?->add later when necessary
#do we want single tensor for entire sentence or list of tensors for each word?
output = []
for caption in caption_list:
temp_caption = caption.split()
temp_caption[len(temp_caption)-1] = temp_caption[len(temp_caption)-1].rstrip(".\n")
#Tensor of list of word vectors
word_vecs = torch.Tensor([word_embedding[w.lower()] for w in temp_caption])
#Don't hard code in 50 here, supposed to be a reference to max_word_length
if len(temp_caption) < 50:
word_vecs = torch.cat((
word_vecs,
torch.zeros(50 - len(temp_caption), word_vecs.size(1))
))
#Add tensor representing one caption to list of all caption tensors
output.append(word_vecs)
#This line was in the original code, but I'm not totally sure what the point is...
#output = torch.stack(output)
return output
print("Loading fasttext model...")
word_embedding = fasttext.load_model(FT_file)
print("Fast text is loaded!")
output = load_dataset(img_files, caption_files, classes_file)