diff --git a/_pages/projects.md b/_pages/projects.md index 4ca239e..eaf3d8b 100644 --- a/_pages/projects.md +++ b/_pages/projects.md @@ -163,7 +163,6 @@ horizontal: false Sized Image - @@ -171,8 +170,7 @@ horizontal: false

Regularized Phase Retrieval for High-Speed Fourier Ptychography

- Fourier ptychography (FP) is a powerful computational imaging technique that provides super-resolution and quantitative phase imaging capabilities by scanning samples in Fourier space with angle-varying illuminations. However, the image reconstruction in FP is inherently ill-posed, particularly when the measurements are noisy and have insufficient data redundancy in the Fourier space. To improve FP reconstruction in high-throughput imaging scenarios, we propose a regularized FP reconstruction algorithm utilizing anisotropic total variation (TV) and Tikhonov regularizations for the object and pupil functions, respectively. To solve this regularized FP problem, we formulate a reconstruction algorithm using the alternating direction method of multipliers and show that our approach successfully recovers high-quality images with sparsely sampled and/or noisy measurements. The results are quantitatively and qualitatively compared against various FP reconstruction algorithms to analyze the effect of regularization under harsh imaging conditions. In particular, we demonstrate the effectiveness of our method on the real experimental FP microscopy images, where the TV regularizer effectively suppresses the measurement noise while maintaining the edge information in the biological specimen and helps retrieve the correct amplitude and phase images even under insufficient sampling. Our proposed algorithm achieves high-quality FP reconstruction along with the improvement of the speed and the cost of the FP data acquisition process without sacrificing image quality. We believe that our FP reconstruction algorithm will be of great interest to the optics and imaging community, particularly as it further impacts various extensions of FP as well as real-space ptychography, which share a common algorithmic -foundation. + Fourier ptychography (FP) is a powerful computational imaging technique that provides super-resolution and quantitative phase imaging capabilities by scanning samples in Fourier space with angle-varying illuminations. However, the image reconstruction in FP is inherently ill-posed, particularly when the measurements are noisy and have insufficient data redundancy in the Fourier space. To improve FP reconstruction in high-throughput imaging scenarios, we propose a regularized FP reconstruction algorithm utilizing anisotropic total variation (TV) and Tikhonov regularizations for the object and pupil functions, respectively. We have demonstrated the effectiveness of our method on the real experimental FP microscopy images, where the TV regularizer effectively suppresses the measurement noise while maintaining the edge information in the biological specimen and helps retrieve the correct amplitude and phase images even under insufficient sampling.

Relevant publications